मराठी

विजय के पास कुछ केले थे और उसने उन्हें दो समूहों (ढेरियों) A एवं B में विभाजित कर लिया। उसने पहले समूह के केलों को 2 रु के 3 केले की दर से बेचा - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

विजय के पास कुछ केले थे और उसने उन्हें दो समूहों (ढेरियों) A एवं B में विभाजित कर लिया। उसने पहले समूह के केलों को 2 रु के 3 केले की दर से बेचा तथा दूसरे समूह के केलों को 1 रु प्रति केले की दर से बेचा और कुल 400 रु प्राप्त किए। यदि उसने पहले समूह के केलों को 1 रु प्रति केले की दर से बेचा होता तथा दूसरे समूह के केलों को 4 रु के 5 केले की दर से बेचा होता, तो उसे कुल 460 रु प्राप्त होते। ज्ञात कीजिए कि उसके पास कुल कितने केले थे।

बेरीज

उत्तर

माना कि लॉट A और B में केलों की संख्या क्रमशः x और y है।

स्थिति I: 3 केले के लिए ₹ 2 की दर से पहले लॉट की लागत + ₹ 1 प्रति केले की दर से दूसरे लॉट की लागत = ₹ 400

⇒ `2/3x + y` = 400

⇒ 2x + 3y = 1200  ......(i)

स्थिति II: पहले लॉट की लागत ₹ 1 प्रति केले की दर से + दूसरे लॉट की लागत 5 केले के लिए ₹ 4 की दर से = प्राप्त राशि

⇒ `x + 4/5y` = 460

⇒ 5x + 4y = 2300  ......(ii)

समीकरण (i) को 4 से और समीकरण (ii) को 3 से गुणा करने और फिर उन्हें घटाने पर, हमें प्राप्त होता है।

(8x + 12y) – (15x + 12y) = 4800 – 6900

⇒ – 7x = – 2100

⇒ x = 300

अब, x का मान समीकरण (i) में रखने पर, हमें प्राप्त होता है।

2 × 300 + 3y = 1200

⇒ 600 + 3y = 1200

⇒ 3y = 1200 – 600

⇒ 3y = 600

⇒ y = 200

∴ केलों की कुल संख्या = समूह A में केलों की संख्या + समूह B में केलों की संख्या

= x + y

= 300 + 200

= 500

अत:, उसके पास 500 केले थे।

shaalaa.com
एक रैखिक समीकरण युग्म को हल करने की बीजगणित विधि - वज्र-गुणन विधि
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: दो चरों वाले रैखिक समीकरणों का युग्म - प्रश्नावली 3.4 [पृष्ठ ३६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 10
पाठ 3 दो चरों वाले रैखिक समीकरणों का युग्म
प्रश्नावली 3.4 | Q 13. | पृष्ठ ३६

संबंधित प्रश्‍न

निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे व्रज-गुणन विधि से ज्ञात कीजिए।

x - 3y - 3 = 0

3x - 9y - 2 = 0


निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे व्रज-गुणन विधि से ज्ञात कीजिए।

2x + y = 5

3x + 2y = 8


निम्न रैखिक समीकरणों के युग्मों में से किसका एक अद्वितीय हल है, किसका कोई हल नहीं है या किसके अपरिमित रूप से अनेक हल हैं। अद्वितीय हल की स्थिति में, उसे व्रज-गुणन विधि से ज्ञात कीजिए।

3x - 5y = 20

6x - 10y = 40


निम्नलिखित आयत में x और y के मान ज्ञात कीजिए:


निम्नलिखित समीकरण-युग्म को हल कीजिए:

`x/a + y/b = a + b, x/a^2 + y/b^2 = 2, a, b ≠ 0`

समीकरण `x/10 + y/5 - 1` = 0 और `x/8 + y/6` = 15 के युग्म का हल ज्ञात कीजिए। इसके बाद λ ज्ञात कीजिए, यदि y = λx + 5 है।


किसी प्रतियोगात्मक परीक्षा में प्रत्येक सही उत्तर के लिए 1 अंक दिया जाता है, जब कि प्रत्येक गलत उत्तर के लिए  `1/2` अंक काट लिया जाता है। जयंती ने 120 प्रश्नों के उत्तर दिए और 90 अंक प्राप्त किए। उसने कितने प्रश्नों के सही उत्तर दिए ?


अंकिता अपने घर तक 14 km की दूरी आंशिक रूप से रिक्शा से और आंशिक रूप से बस द्वारा तय करती है। यदि वह 2 km दूरी रिक्शा से तथा शेष दूरी बस से तय करे, तो उसे कुल दूरी चलने में आधा घंटा लगता है। दूसरी ओर, यदि वह 4 km दूरी रिक्शा से और शेष दूरी बस से चले, तो उसे 9 मिनट अधिक लगते हैं। रिक्शा की चाल और बस की चाल ज्ञात कीजिए।


एक व्यक्ति शांत जल में 5 km/h की चाल से नाव खेने पर 40 km की दूरी धारा के प्रतिकूल जाने में उस समय से तिगुना समय लेता है जितना 40 km की दूरी धारा के अनुकूल जाने में लगता है। धारा की चाल ज्ञात कीजिए।


एक मोटरबोट धारा के प्रतिकूल 30 km और धारा के अनुकूल 28 km जाने में 7 घंटे का समय लगाती है। वह धारा के प्रतिकूल 21 km जाकर 5 घंटे में वापस आ सकती है। शांत जल में नाव की चाल और धारा की चाल ज्ञात कीजिए।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×