मराठी

वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______ - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता ______

पर्याय

  • 0

  • 12

  • 16

  • 32

MCQ
रिकाम्या जागा भरा

उत्तर

वक् y = –x3 + 3x2 + 9x – 27 की उच्चतम प्रवणता 12 है।

व्याख्या:

दिया है कि y = –x3 + 3x2 + 9x – 27

`"dy"/'dx"` = – 3x2 + 6x + 9

∴ दिए गए वक्र का ढाल,

m = – 3x2 + 6x + 9   ....`("dy"/"dx" = "m")`

`"dm"/"dx"` = –6x + 6

`"dm"/"dx"` = 0 स्थानीय उच्चिष्ठ और स्थानीय निम्निष्ठ के लिए,

∴ – 6x + 6 = 0

⇒ x = 1

अब `("d"^2"m")/("dx"^2)` = = – 6 < 0 उच्चिष्ठ

∴ x = 1 पर ढाल का अधिकतम मान है।

`"m"_(x = 1)` = – 3(1)2 + 6(1) + 9

= – 3 + 6 + 9

= 12

shaalaa.com
अवकलज के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: अवकलज के अनुप्रयोग - प्रश्नावली [पृष्ठ १३९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 6 अवकलज के अनुप्रयोग
प्रश्नावली | Q 57 | पृष्ठ १३९

संबंधित प्रश्‍न

सिद्ध कीजिए कि फलन f(x) = tanx – 4x  अंतराल `((-pi)/3, pi/3)` निरंतर हासमान है।


निर्धारित कीजिए कि x के किन मानों के लिए, फलन y = `x^4 – (4x^3)/3` वर्धमान है तथा किन मानों के लिए, यह हासमान है।


सिद्ध कीजिए कि फलन f(x) = 4x3 – 18x2 + 27x – 7 का कोई उच्चिष्ठ अथवा निम्निष्ठ नहीं है।


अवकलों के प्रयोग द्वारा `sqrt(0.082)` का सन्निकट मान ज्ञात कीजिए।


फलन f(x) = `- 3/4 x^4 - 8x^3 - 45/2 x^2 + 105` के सभी स्थानीय उच्चिष्ठ तथा स्थानीय निम्निष्ठ बिंदुओं को ज्ञात कीजिए।


सिद्ध कीजिए कि `x + 1/x` का स्थानीय उच्चतम मीन उसके स्थानीय निम्नतम मान से कम है।


सिद्ध कीजिए कि वक्र x = 3cos θ – cos3θ, y = 3sinθ – sin3θ के किसी बिंदु पर अभिंलब का समीकरण 4 (y cos3θ – x sin3θ) = 3 sin 4θ 


वक्र `3"y" = 6"x"  –  5"x"^3` पर स्थित उस बिंदु का भुज, जिस पर वक्र का अभिलंब मूल बिंदुसे होकर जाता है।


समीकरण x = et . cost, y = et . sint द्वारा प्रदत्त वक्र की t = `pi/4` पर स्पर्श रेखा, x-अक्ष से कोण बनाती है।


यदि f (x) = `1/(4x^2 + 2x + 1)`, तो इसका उच्चतम मान ______ है।


यदि f (x) = sinx तो अंतराल `[(-pi)/2, pi/2]` में f का निम्निष्ठ मान ______ है।


नमक का एक गोलाकार गेंद पानी में इस प्रकार घुल रहा है कि किसी क्षण उसके आयतन के घटने की दर उसके पृष्ठीय क्षेत्रफल के समानुपाती है। सिद्ध कीजिए कि उसकी त्रिज्या एक अचर दर से घट रही है।


कोण θ, 0 < θ < `π/2`, ज्ञात कीजिए जो अपने sine से दोगुनी तेजी से बढ़ता है।


वक्र 2x = y2 तथा 2xy = k के लंबकोणीय प्रतिच्छेद के लिए प्रतिबंध ज्ञात कीजिए।


सिद्ध कीजिए कि वक्र y2 = 4x तथा x2 + y2 – 6x + 1 = 0 एक दूसरे को बिंदु (1, 2) पर स्पर्श करते हैं।


सिद्ध कीजिए कि रेखा `x/"a" +y/"b"` = 1 , वक्र y = b . e-x/a को उस बिंदु पर स्पर्श करती है जिस पर वक्र y-अक्ष को काटता है।


किस बिंदु पर, वक्र y = – x3 + 3x2 + 9x – 27 की प्रवणता उच्चतम है? उच्चतम प्रवणता भी ज्ञात कीजिए।


सिद्ध कीजिए कि f (x) = sinx + `sqrt3` cosx का उच्चिष्ठ मान x = `pi/6` पर है।


वर्गाकार आधार तथा ऊर्ध्वाधर पृष्ठ वाले धातु के किसी बाक्स में 1024 cm3 वस्तु आती है। शीर्ष तथा आधार के पृष्ठों के माल (वस्तु) का मूल्य Rs 5/cm2 है तथा पृष्ठों के मान का मूल्य Rs 2.50/cm2  हैं। बाक्स का निम्नतम मूल्य ज्ञात कीजिए।


किसी समबाहु त्रिभुज की भुजाएँ  2 cm/sec की दर से बढ़ रही हैं। जब भुजा 10 cm है, त्रिभुज का क्षेत्रफल ______ की दर से बढ़ता है।


यदि y = x4 – 10 तथा यदि x, 2 से 1.99 तक परिवर्तित होता है, तो y का परिवर्तन क्या (कितना) है, 


वे बिंदु, जिन पर वक्र y = x3 – 12x + 18 की स्पर्श रेखाएँ x-अक्ष के समांतर हैं,


वक्र y = e2x की, बिंदु (0, 1) पर, स्पर्श रेखा x-अक्ष से बिंदु  ______


वक्र x = t2 + 3t – 8, y = 2t2 – 2t – 5 की, बिंदु (2, -1) पर, स्पर्श रेखा की प्रवणता ______ है।


यदि x एक वास्तविक संख्या है, तो x2 – 8x + 17 का निम्नतम मान ______


a के वे मान जिनके लिए फलन f (x) = sinx – ax + b, R में वर्धमान है ______ .हैं।


फलन f(x) = `(2x^2 - 1)/x^4`, x > 0, अंतराल में ______ हासमान है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×