मराठी

वक्र y = cosx द्वारा x = 0 और x = π के बीच में परिबद्ध क्षेत्र का क्षेत्रफल है - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

वक्र y = cosx द्वारा x = 0 और x = π के बीच में परिबद्ध क्षेत्र का क्षेत्रफल है

पर्याय

  • 2 वर्ग इकाई

  • 4 वर्ग इकाई

  • 3 वर्ग इकाई

  • 1 वर्ग इकाई

MCQ

उत्तर

सही उत्तर 2 वर्ग इकाई है।

व्याख्या:

दिया गया है कि: y = cos x, x = 0, x = π

वाँछित क्षेत्रफल = `int_0^(pi/2) cos x  "d"x + |int_(pi/2)^pi cos x  "d"x|`

= `[sin x]_0^(pi/2) + |(sin x)_(pi/2)^pi|`

= `[sin  pi/2 - sin 0] + |[sin pi - sin  pi/2]|`

= `(1 - 0) + |0 - 1|`

= 1 + 1

= 2 वर्ग इकाई 

shaalaa.com
समाकलनों के अनुप्रयोग
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: स्माकलो के अनुप्रयोग - प्रश्नावली [पृष्ठ १७४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 8 स्माकलो के अनुप्रयोग
प्रश्नावली | Q 28 | पृष्ठ १७४

संबंधित प्रश्‍न

समाकलन विधि का उपयोग करते हुए एक ऐसे त्रिभुज ABC का क्षेत्रफल ज्ञात कीजिए जिसके शीर्षों के निर्देशांक A(2, 0), B (4, 5) एवं C (6, 3) हैं।


वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x = 3 cost, y = 2 sint से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x = `"a"/2` द्वारा वृत्त x2 + y2 = a2 के काटे गए एक लघु वृत्तखंड का क्षेत्रफल ज्ञात कीजिए।


वक्र y = x2 और रेखा y = 16 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।


वक्र y = x2 + x, x-अक्ष तथा x = 2 और x = 5 रेखाओं से परिबद्ध क्षेत्र का क्षेत्रफल के ______ बराबर है।


वक्र y2 = 4x और x2 = 4y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


परवलय x2 = y और रेखा y = x + 2 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखा x = 2 और परवलय y2 = 8x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = `sqrt(x - 1)` का अंतराल [1, 5] में एक संभावित आकृति खींचिए। इस वक्र के अंतर्गत तथा x = 1 और x = 5 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


y = `sqrtx` और y = x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = –x2 और सरल रेखा x + y + 2 = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


प्रथम चतुर्थाश में वक्र y = `sqrtx, x = 2y + 3` और x-अक्ष से परिबद्ध क्षेत्रफल ज्ञात कीजिए।


x = 0 और x = 2π के बीच वक्र y = sinx द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र y = 1 + |x +1|, x = –3, x = 3 तथा y = 0 का एक संभावित आकृति खींचिए। समाकलन का प्रयोग करते हुए, इन से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।


वक्र x2 = 4y  और सरल रेखा x = 4y – 2 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र y = `sqrt(16 - x^2)` और x-अक्ष से परिबद्ध क्षेत्र का क्षेत्रफल है


प्रथम चतुर्थाश में, x-अक्ष, रेखा y = x और वृत्त x2 + y2 = 32 द्वारा घिरे क्षेत्र का क्षेत्रफल है-


वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है


वक्र x = 2y + 3 तथा y = 1 और y = –1 रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×