Advertisements
Advertisements
प्रश्न
y = `sqrtx` और y = x से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
उत्तर
हमें वक्र y = `sqrt(x)` और रेखा y = x के समीकरण दिए गए हैं।
y = `sqrt(x)` को हल करना
⇒ y2 = x और y = x,
हमें प्राप्त होता है: x2 = x
⇒ x2 – x = 0
⇒ x(x – 1) = 0
∴ x = 0, 1
छायांकित क्षेत्र का वाँछित क्षेत्रफल
= `int_0^1 sqrt(x) "d"x - int_0^1 x "d"x`
= `2/3 [x^(3/2)]_0^1 - 1/2 [x^2]_0^1`
= `2/3[(1)^(3/2) - 0] - 1/2 [(1)^2 - 0]`
= `2/3 - 1/2`
⇒ `(4 - 3)/6`
⇒ `1/6` वर्ग इकाई
इस प्रकार, वाँछित क्षेत्रफल = `1/6` वर्ग इकाई
APPEARS IN
संबंधित प्रश्न
वक्र ay2 = x3, y-अक्ष तथा y = a और y = 2a रेखाओं द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय y2 = 2x और सरल रेखा x - y = 4 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलयों y2 = 6x और x2 = 6y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
उस क्षेत्र का क्षेत्रफल ज्ञात कीजिए, जो परवलय y = `(3x^2)/4` और रेखा 3x - 2y + 12 = 0 के बीच में परिबद्ध है।
वक्र x = at2 और y = 2at द्वारा t = 1 और t = 2 के संगत कोटियों के बीच परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = x2 और रेखा y = 16 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र x = y2 , y-अक्ष तथा रेखा y = 3 और y = 4 से परिबद्ध क्षेत्र का क्षेत्रफल ______ है।
वक्र y2 = 4x और x2 = 4y से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
y2 = 9x और y = x बीच में पड़ने वाले क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय x2 = y और रेखा y = x + 2 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt(x - 1)` का अंतराल [1, 5] में एक संभावित आकृति खींचिए। इस वक्र के अंतर्गत तथा x = 1 और x = 5 रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = `sqrt("a"^2 - x^2)` के अंतर्गत तथा x = 0 और x = a रेखाओं के बीच के क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = –x2 और सरल रेखा x + y + 2 = 0 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थाश में वक्र y = `sqrtx, x = 2y + 3` और x-अक्ष से परिबद्ध क्षेत्रफल ज्ञात कीजिए।
रेखाओं y = 4x + 5, y = 5 – x और 4y = x + 5 से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 2cosx तथा x-अक्ष द्वारा x = 0 से x = 2π तक परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y = 1 + |x +1|, x = –3, x = 3 तथा y = 0 का एक संभावित आकृति खींचिए। समाकलन का प्रयोग करते हुए, इन से परिबद्ध क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थाश में, x-अक्ष, रेखा y = x और वृत्त x2 + y2 = 32 द्वारा घिरे क्षेत्र का क्षेत्रफल है-
परवलय y2 = x और सरल रेखा 2y = x से परिबद्ध क्षेत्र का क्षेत्रफल है
वक्र y = sinx द्वारा कोटि x = 0, और x = `pi/2` तथा x-अक्ष के बीच परिबद्ध क्षेत्र का क्षेत्रफल है
दीर्घवृत्त `x^2/25 + "y"^2/16` = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है
वृत्त x2 + y2 = 1 द्वारा परिबद्ध क्षेत्र का क्षेत्रफल है