Advertisements
Advertisements
प्रश्न
वक्र y = x3, x-अक्ष एवं कोटियों x = -2, x = 1 से घिरे क्षेत्र का क्षेत्रफल है:
पर्याय
-9
`(-15)/4`
`15/4`
`17/4`
उत्तर
`17/4`
स्पष्टीकरण -
वक्र y = x3
अवकलन करने पर,
`dy/dx = 3x^2`, जो सदैव धनात्मक रहता है।
∴ वक्र निरन्तर वर्धमान है।
`dy/dx = 0`, x = 0 मूल बिन्दु पर x-अक्ष स्पर्श रेखा है।
अभीष्ट क्षेत्रफल = छायांकित भाग का क्षेत्रफल
= क्षेत्र AQO का क्षेत्रफल + क्षेत्र OBP का क्षेत्रफल
`= |int_(-2)^0 x^3 dx| + |int_0^1 x^3 dx|`
`= |[x^4/4]_(-2)^0| + |[x^4/4]_0^1|`
`= 16/4 + 1/4`
`= 17/4` वर्ग इकाई
APPEARS IN
संबंधित प्रश्न
वक्र y2 = x रेखाओं x = 1, x = 4 एवं x-अक्ष से घिरे क्षेत्र का प्रथम पाद में क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में x2 = 4y, y = 2, y = 4 एवं y-अंक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/16 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/4 + y^2/9 = 1` से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 रेखा `x = sqrt3 "y"` एवं x-अक्ष द्वारा घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
छेदक रेखा `x = a/sqrt2` द्वारा वृत्त x2 + y2 = a2 के छोटे भाग का क्षेत्रफल ज्ञात कीजिए।
यदि वक्र x = y2 एवं रेखा x = 4 से घिरा हुआ क्षेत्रफल रेखा x = a द्वारा दो बराबर भागों में विभाजित होता है तो a का मान ज्ञात कीजिए।
वक्र x2 = 4y एवं रेखा x = 4y - 2 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्र y2 = 4x एवं रेखा x = 3 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
प्रथम चतुर्थांश में वृत्त x2 + y2 = 4 एवं रेखाओं x = 0, x = 2 से घिरे क्षेत्र का क्षेत्रफल है:
दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:
y = x2; x = 1, x = 2 एवं x-अक्ष
दिए हुए वक्र एवं रेखा से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए:
y = x4; x = 1, x = 5 एवं x-अक्ष
x = 0 एवं x = 2π तथा वक्र y = sin x से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय y = 4ax एवं रेखा y = mx से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय 4y = 3x2 एवं रेखा 2y = 3x + 12 से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
दीर्घवृत्त `x^2/"a"^2 + "y"^2/"b"^2 = 1` एवं रेखा `x/"a" + "y"/"b" = 1` से घिरे लघु क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
परवलय x2 = y, रेखा y = x + 2 एवं x अक्ष से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
वक्रों {(x, y) : y ≥ x2 तथा y = |x|} से घिरे क्षेत्र का क्षेत्रफल ज्ञात कीजिए।
क्षेत्र y2 ≥ 6x और वृत्त x2 + y = 16 में सम्मिलित क्षेत्र का क्षेत्रफल है-
वक्र y = x|x|, x-अक्ष एवं कोटियों x = -1 तथा x = 1 से घिरे क्षेत्र का क्षेत्रफल है:
y-अक्ष, y = cosx एवं y = sin x, 0 ≤ x ≤ `pi/2` घिरे क्षेत्र का क्षेत्रफल है-