Advertisements
Advertisements
प्रश्न
Write each of the following polynomials in the standard form. Also, write their degree.
(x3 − 1)(x3 − 4)
उत्तर
\[( x^3 - 1)( x^3 - 4) = x^6 - 5 x^3 + 4\]
\[\text{Standard form of the given polynomial can be expressed as:} \]
\[( x^6 - 5 x^3 + 4) or (4 - 5 x^3 + x^6 )\]
\[\text{The degree of the polynomial is 6 .} \]
APPEARS IN
संबंधित प्रश्न
Divide the given polynomial by the given monomial.
(5x2 − 6x) ÷ 3x
Divide 72xyz2 by −9xz.
Divide x4 − 2x3 + 2x2 + x + 4 by x2 + x + 1.
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
15z3 − 20z2 + 13z − 12 | 3z − 6 |
Verify the division algorithm i.e. Dividend = Divisor × Quotient + Remainder, in each of the following. Also, write the quotient and remainder.
Dividend | Divisor |
4y3 + 8y + 8y2 + 7 | 2y2 − y + 1 |
Using division of polynomials, state whether
x + 6 is a factor of x2 − x − 42
Divide the first polynomial by the second in each of the following. Also, write the quotient and remainder:
3x2 + 4x + 5, x − 2
Find whether the first polynomial is a factor of the second.
y − 2, 3y3 + 5y2 + 5y + 2
Divide:
ax2 − ay2 by ax + ay
Statement A: If 24p2q is divided by 3pq, then the quotient is 8p.
Statement B: Simplification of `((5x + 5))/5` is 5x