Advertisements
Advertisements
प्रश्न
Write the value of \[\left( \frac{1}{2} \right)^3 + \left( \frac{1}{3} \right)^3 - \left( \frac{5}{6} \right)^3 .\]
उत्तर
The given expression is
`(1/2)^3 + (1/3)^3 - (5/6)^3`
Let, `a=1/2 ,b=1/3`and. `c = -5/6`Then the given expression becomes
`(1/2)^3 + (1/3)^3 - (5/6)^3 = a^3 + b^3+c^3`
Note that:
`a+b+c = 1/2 + 1/3 + (-5/6)`
` = 1/2 + 1/3 - 5/6`
` =0`
Recall the formula
`a^3 +b^3 + c^3 - 3abc - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab - bc - ca)`
When a + b + c = 0, this becomes
`a^3 +b^3 + c^3 - 3abc = 0. (a^2 +b^2 + c^2 - ab - bc - ca)`
` =0 `
`a^3 + b^3 + c^3 = 3abc`
So, we have the new formula
`a^3 + b^3 + c^3 = 3abc`, when a + b + c = 0.
Using the above formula, the value of the given expression is
`a^3 +b^3 +c^3 = 3abc`
`(1/2)^3 + (1/3)^3 - (5/6)^3 = 3.(1/2).(1/3).(-5/6)`
`1/2 ^3 + (1/3)^3 - (5/6)^3 = - 5/12`
APPEARS IN
संबंधित प्रश्न
Factorize the following expressions:
a3 + b3 + a + b
Factorize the following expressions:
`a^3 - 1/a^3 - 2a + 2/a`
`2sqrt2a^3 + 16sqrt2b^3 + c^3 - 12abc`
The value of \[\frac{(2 . 3 )^3 - 0 . 027}{(2 . 3 )^2 + 0 . 69 + 0 . 09}\]
The factors of x2 + 4y2 + 4y − 4xy − 2x − 8 are
Write the number of the term of the following polynomial.
23 + a x b ÷ 2
Evaluate: (4m - 2)(m2 + 5m - 6)
Multiply: (2x + 3y)(2x + 3y)
Divide: 12x3y - 8x2y2 + 4x2y3 by 4xy
Express the following properties with variables x, y and z.
Associative property of addition