Advertisements
Advertisements
प्रश्न
Write the value of 303 + 203 − 503.
उत्तर
The given expression is
303 + 203 − 503.
Let a=30,b= 20 and c = - 50. Then the given expression becomes
`30^3 + 20^3 - 50^3 = a^3 +b^3 + c^3`
Note that
`a+b+c = 30 + 20 + (-50)`
` =30 + 20 - 50`
` =0`
Recall the formula
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab - bc - ca)`
When a + b + c = 0, this becomes
`a^3 +b^3 + c^3 - 3abc = 0.(a^2 + b^2 +c^2 - ab - bc - ca)`
`a^3 +b^3+c^3 = 3abc`
So, we have the new formula
`a^3 +b^3+c^3 = 3abc` , when a + b + c = 0,.
Using the above formula, the value of the given expression is
`a^3 +b^3+c^3 = 3abc`
`30^3 + 20^3 - 50^3 = 3.(30).(20).( -50)`
`30^3 + 20^3 - 50^3 = -90000`
APPEARS IN
संबंधित प्रश्न
Factorize `x^2 + 2sqrt3x - 24`
Factorize 125x3 - 27 y3 - 225x2 y +135xy2
(a – 3b)3 + (3b – c)3 + (c – a)3
If x2 + y2 = 29 and xy = 2, find the value of x4 + y4 .
The value of \[\frac{(0 . 013 )^3 + (0 . 007 )^3}{(0 . 013 )^2 - 0 . 013 \times 0 . 007 + (0 . 007 )^2}\] is
Divide: - 50 + 40p by 10p
Divide: 5x2 - 3x by x
Write in the form of an algebraic expression:
Surface area of a cube is six times the square of its edge.
Write the variables, constant and terms of the following expression
18 + x – y
A taxi service charges ₹ 8 per km and levies a fixed charge of ₹ 50. Write an algebraic expression for the above situation, if the taxi is hired for x km.