Advertisements
Advertisements
प्रश्न
Write the value of 303 + 203 − 503.
उत्तर
The given expression is
303 + 203 − 503.
Let a=30,b= 20 and c = - 50. Then the given expression becomes
`30^3 + 20^3 - 50^3 = a^3 +b^3 + c^3`
Note that
`a+b+c = 30 + 20 + (-50)`
` =30 + 20 - 50`
` =0`
Recall the formula
`a^3 + b^3 +c^3 - 3abc = (a+b+c)(a^2 +b^2 + c^2 - ab - bc - ca)`
When a + b + c = 0, this becomes
`a^3 +b^3 + c^3 - 3abc = 0.(a^2 + b^2 +c^2 - ab - bc - ca)`
`a^3 +b^3+c^3 = 3abc`
So, we have the new formula
`a^3 +b^3+c^3 = 3abc` , when a + b + c = 0,.
Using the above formula, the value of the given expression is
`a^3 +b^3+c^3 = 3abc`
`30^3 + 20^3 - 50^3 = 3.(30).(20).( -50)`
`30^3 + 20^3 - 50^3 = -90000`
APPEARS IN
संबंधित प्रश्न
Factorize `2a^2 + 2 sqrt6ab + 3b^2`
Factorize x2 - y2 - 4xz + 4z2
Find the value of the following expression: 81x2 + 16y2 − 72xy, when \[x = \frac{2}{3}\] and \[y = \frac{3}{4}\]
If a + b + c = 0, then write the value of a3 + b3 + c3.
The expression (a − b)3 + (b − c)3 + (c −a)3 can be factorized as
The area of a rectangle is 6x2 – 4xy – 10y2 square unit and its length is 2x + 2y unit. Find its breadth.
Divide: 3y3 - 9ay2 - 6ab2y by -3y
Divide: x3 − 6x2 + 11x − 6 by x2 − 4x + 3
Divide: m3 − 4m2 + m + 6 by m2 − m − 2
Write the coefficient of x2 and x in the following polynomials
πx2 – x + 2