Advertisements
Advertisements
प्रश्न
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
उत्तर
यह देखते हुए: A = `[(0, -1, 2),(4, 3, -4)]`, B = `[(4, 0),(1, 3),(2, 6)]`
L.H.S. AB = `[(0,-1, 2),(4, 3, -4)]_(2 xx 3) [(4, 0),(1, 3),(2, 6)]_(3 xx 2)`
= `[(0 - 1+ 4, 0 - 3 + 12),(16 + 3 - 8, 0 + 9 - 24)]_(2 xx 2)`
= `[(3, 9),(11, -15)]_(2 xx 2)`
(AB)' = `[(3, 11),(9, -15)]_(2 xx 2)`
R.H.S. B' = `[(4, 0),(1, 3),(2, 6)]^'`
= `[(4, 1, 2),(0, 3, 6)]`
A' = `[(0, -1, 2),(4, 3, -4)]^'`
= `[(0, 4),(-1, 3),(2, -4)]`
B'A' = `[(4, 1, 2),(0, 3, 6)]_(2 xx 3) [(0, 4),(-1, 3),(2, -4)]_(3 xx 2)`
= `[(0 - 1 + 4, 16 + 3 - 8),(0 - 3 + 12, 0 + 9 - 24)]_(2 xx 2)`
= `[(3, 11),(9, -15)]_(2 xx 2)`
L.H.S. = R.H.S.
इसलिए, (AB)' = B'A' सत्यापित है।
APPEARS IN
संबंधित प्रश्न
यदि संभव हो, तो A और B आव्यूहों का योग ज्ञात कीजिए, जहाँ A = `[(sqrt(3), 1),(2, 3)]`, और B = `[(x, y, z),(a, "b", 6)]` है।
दर्शाइए कि यदि `[(1, x, 1)] [(1, 3, 2),(2, 5,1),(15, 3, 2)] [(1),(2),(x)]` = O हो तो x का मान ज्ञात कीजिए।
आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।
यदि A = `[(3, -4),(1, 1),(2, 0)]` और B = `[(2, 1, 2),(1, 2, 4)]`, हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2
यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?
यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]` है तो सत्यापित कीजिए कि A2 + A = A(A + I), जहाँ I एक 3 × 3 तत्समक आव्यूह है।
सिद्ध कीजिए कि किसी भी आव्यूह A के लिए A′A तथा AA′ दोनों ही सममित आव्यूह हैं।
दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT
गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, -3),(-2, 6)]`
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
यदि `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, हो तो x तथा y के मान होंगे।
यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1 "यदि i" ≠ "j" ),( 0 "यदि i" ≠ "j" ):]` तब A2 बराबर है।
यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।
प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।
______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।
यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।
यदि A और B सममित आव्यूह हैं तो BA – 2AB ______ है।
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
यदि आव्यूह AB = O, तब A = O या B = O या दोनों A और B शून्य आव्यूह हैं।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।