मराठी

यदि A = [12-13], B = [4015], C = [201-2] तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB

बेरीज

उत्तर

हमारे पास है,

A = `[(1, 2),(-1, 3)]`

B = `[(4, 0),(1, 5)]`

C = `[(2, 0),(1, -2)]`

और a = 4, b = –2

(a + b)B = `(4 - 2) [(4, 0),(1, 5)]`   .....[∵ दिया गया a = 4, b = –2]

= `[(8, 0),(2, 10)]`

इसके अलावा, aB + bB

= 4B – 2B

= `[(16, 0),(4, 20)] - [(8, 0),(2, 10)]`

= `[(8, 0),(2, 10)]`

= `(a + b)B

इसलिए साबित हुआ।

shaalaa.com
आव्यूह
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: आव्यूह - प्रश्नावली [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 3 आव्यूह
प्रश्नावली | Q 32. (c) | पृष्ठ ५६

संबंधित प्रश्‍न

यदि A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, हों तो A + B, B + C, C + D और B + D योगफलों में कौन से योगफल परिभाषित हैं।


यदि  `[(2x, 3)] [(1, 2),(-3, 0)] [(x),(8)]` = 0, हो तो x का मान निकालिए।


आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।


यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।


यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______


एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।


यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो X + Y ज्ञात कीजिए।


आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।


x तथा y के लिए हल कीजिए।

`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


यदि A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` और C = `[(-1, 2, 1),(1, 0, 2)]` हो तो सत्यापित कीजिए कि A(B + C) = (AB + AC)


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA


गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N


यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn 


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।


यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)


किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?


किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।


किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।


यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।


यदि A और B सममित आव्यूह हैं तो BA – 2AB ______ है।


दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।


यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।


यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।


किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।


(AB)–1 = A–1. B–1 जहाँ A और B व्यूत्क्रमणीय आव्यूह हैं जो गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×