Advertisements
Advertisements
प्रश्न
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
उत्तर
यदि A एक सममित आव्यूह है तो A3 एक सममित आव्यूह होगा।
व्याख्या:
दिया गया A सममित आव्यूह है।
∴ A' = –A
अब (A3)' = (A')3 .....[∵ (A')n = (An)']
= A3
APPEARS IN
संबंधित प्रश्न
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।
यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.
एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (A – B)′ = A′ – B′
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AT)T = A
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, 3),(-5, 7)]`
यदि A = `[(1, 5),(7, 12)]` और B `[(9, 1),(7, 8)]` हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो।
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।
यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I
यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।
______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।