Advertisements
Advertisements
प्रश्न
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
उत्तर
आव्यूह का क्रम `[(2, -1),(1, 0),(-3, 4)]` और 3 × 2 आव्यूह है।
`[(-1, -8, -10),(1, -2, -5),(9, 22, 15)]` is 3 × 3
∴ आव्यूह A का क्रम 2 × 3 होना चाहिए।
मान लीजिए A = `[("a", "b", "c"),("d", "e", "f")]_(2 xx 3)`
तो, `[(2, -1),(1, 0),(-3, 4)] [("a", "b", "c"),("d", "e", "f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
`[(2"a" - "d", 2"b" - "e", 2"c" - "f"),("a" + 0, "b" + 0, "c" + 0),(-3"a" + 4"d", -3"b" + 4"e", -3"c" + 4"f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 5)]`
संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं,
2a – d = – 1 और a = 1
⇒ 2 × 1 – d = – 1
⇒ d = 2 + 1
⇒ d = 3
2b – e = – 8 और b = – 2
⇒ 2(– 2) – e
⇒ – 8
⇒ – 4 – e = – 8
⇒ e = 4
2c – f = – 10 और c = – 5
⇒ 2(– 5) – f = – 10
⇒ – 10 – f = – 10
⇒ f = 0
a = 1, b = – 2, c = – 5, d = 3, e = 4 और f = 0
अत: A = `[(1, -2, -5),(3, 4, 0)]`.
APPEARS IN
संबंधित प्रश्न
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
यदि `[(2x, 3)] [(1, 2),(-3, 0)] [(x),(8)]` = 0, हो तो x का मान निकालिए।
आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (2A + B)′ = 2A′ + B′
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (A – B)′ = A′ – B′
माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT
यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
कोटि 3 × 3 के सभी संभव आव्यूहों की संख्या जिनकी प्रत्येक प्रविष्ठि 2 या 0 हो, होगी।
यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।
आव्यूहों का गुणनफल, योग का ______ करता है।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।
यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।