Advertisements
Advertisements
Question
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
Solution
आव्यूह का क्रम `[(2, -1),(1, 0),(-3, 4)]` और 3 × 2 आव्यूह है।
`[(-1, -8, -10),(1, -2, -5),(9, 22, 15)]` is 3 × 3
∴ आव्यूह A का क्रम 2 × 3 होना चाहिए।
मान लीजिए A = `[("a", "b", "c"),("d", "e", "f")]_(2 xx 3)`
तो, `[(2, -1),(1, 0),(-3, 4)] [("a", "b", "c"),("d", "e", "f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
`[(2"a" - "d", 2"b" - "e", 2"c" - "f"),("a" + 0, "b" + 0, "c" + 0),(-3"a" + 4"d", -3"b" + 4"e", -3"c" + 4"f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 5)]`
संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं,
2a – d = – 1 और a = 1
⇒ 2 × 1 – d = – 1
⇒ d = 2 + 1
⇒ d = 3
2b – e = – 8 और b = – 2
⇒ 2(– 2) – e
⇒ – 8
⇒ – 4 – e = – 8
⇒ e = 4
2c – f = – 10 और c = – 5
⇒ 2(– 5) – f = – 10
⇒ – 10 – f = – 10
⇒ f = 0
a = 1, b = – 2, c = – 5, d = 3, e = 4 और f = 0
अत: A = `[(1, -2, -5),(3, 4, 0)]`.
APPEARS IN
RELATED QUESTIONS
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो X + Y ज्ञात कीजिए।
दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
सिद्ध कीजिए कि किसी भी आव्यूह A के लिए A′A तथा AA′ दोनों ही सममित आव्यूह हैं।
माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, -3),(-2, 6)]`
यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।
यदि `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]` एक विषम सममित आव्यूह हो तो a, b और c के मान ज्ञात कीजिए।
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।
किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?
प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।
यदि A सममित आव्यूह है तो B′AB ______ है।
एक आव्यूह एक संख्या को निरूपित करता है।
यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।