Advertisements
Advertisements
Question
दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।
Solution
दिया गया है कि A = `[(5, 3),(-1, -2)]`
A2 = `"A" * "A"`
= `[(5, 3),(-1, -2)][(5, 3),(-1, -2)]`
= `[(25 - 3, 15 - 6),(-5 + 2, -3 + 4)]`
= `[(22, 9),(-3, 1)]`
A2 – 3A – 7I = O
L.H.S. `[(2, 9),(-3, 1)] -3[(5, 3),(-1, -2)] -7[(1, 0),(0, 1)]`
⇒ `[(22, 9),(-3, 1)] - [(15, 9),(-3, -6)] - [(7, 0),(0, 7)]`
⇒ `[(22 - 15 - 7, 9 - 9 - 0),(-3 + 3 - 0, 1 + 6 - 7)]`
⇒ `[(0, 0),(0, 0)]` R.H.S.
हमें दिया गया है A2 – 3A – 7I = O
⇒ A–1 [A2 – 3A – 7I] = A–1O ....[दोनों पक्षों को A–1 से पूर्व-गुणा करना]
⇒ A–1A · A – 3A–1 · A – 7A–1 I = O .....[A–1O = O]
⇒ I · A – 3I – 7A–1 I = O
⇒ A – 3I – 7A–1 = O
⇒ –7A–1 = 3I – A
⇒ A–1 = `1/(-7) [3"I" - "A"]`
⇒ A–1 = `1/(-7) [3((1, 0),(0, 1)) - ((5, 3),(-1,-2))]`
= `1/(-7) [3((1, 0),(0, 1)) - ((5, 3),(-1,-2))]`
= `1(-7) [(3 - 5, 0 - 3),(0 + 1, 3 + 2)]`
= `1/(-7) [(-2, -3),(1, 5)]`
अत: A–1 = `- 1/7 [(-2, -3),(1, 5)]`
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए यदि एक आव्यूह सममित तथा विषम सममित दोनों ही हो तो वह एक शून्य आव्यूह है।
यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।
यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, -3),(-2, 6)]`
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो α का मान ज्ञात कीजिए।
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।
यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।
आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।
______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
एक आव्यूह एक संख्या को निरूपित करता है।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।
यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।
यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।