मराठी

दर्शाइए कि A = [53-1-2] समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।

बेरीज

उत्तर

दिया गया है कि A = `[(5, 3),(-1, -2)]`

A2 = `"A" * "A"`

= `[(5, 3),(-1, -2)][(5, 3),(-1, -2)]`

= `[(25 - 3, 15 - 6),(-5 + 2, -3 + 4)]`

= `[(22, 9),(-3, 1)]`

A2 – 3A – 7I = O

L.H.S. `[(2, 9),(-3, 1)] -3[(5, 3),(-1, -2)] -7[(1, 0),(0, 1)]`

⇒ `[(22, 9),(-3, 1)] - [(15, 9),(-3, -6)] - [(7, 0),(0, 7)]`

⇒ `[(22 - 15 - 7, 9 - 9 - 0),(-3 + 3 - 0, 1 + 6 - 7)]`

⇒ `[(0, 0),(0, 0)]` R.H.S.

हमें दिया गया है A2 – 3A – 7I = O

⇒ A–1 [A2 – 3A – 7I] = A–1O  ....[दोनों पक्षों को A–1 से पूर्व-गुणा करना]

⇒ A–1A · A – 3A–1 · A – 7A–1 I = O  .....[A–1O = O]

⇒ I · A – 3I – 7A–1 I = O

⇒ A – 3I – 7A–1 = O

⇒ –7A–1 = 3I – A

⇒ A–1 = `1/(-7) [3"I" - "A"]`

⇒ A–1 = `1/(-7) [3((1, 0),(0, 1)) - ((5, 3),(-1,-2))]`

= `1/(-7) [3((1, 0),(0, 1)) - ((5, 3),(-1,-2))]`

= `1(-7) [(3 - 5, 0 - 3),(0 + 1, 3 + 2)]`

= `1/(-7) [(-2, -3),(1, 5)]`

अत: A–1 = `- 1/7 [(-2, -3),(1, 5)]`

shaalaa.com
आव्यूह
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: आव्यूह - प्रश्नावली [पृष्ठ ५३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 3 आव्यूह
प्रश्नावली | Q 11 | पृष्ठ ५३

संबंधित प्रश्‍न

आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।


यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______


यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______


आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयव a23, a31, a12  लिखिए।


एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।


आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।


यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।


यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?


यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)


माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA


गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N


यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।


यदि P(x) = `[(cosx, sinx),(-sinx, cosx)]`, हो तो दिखाइए कि P(x) . (y) = P(x + y) = P(y) . P(x)


यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण  `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।


किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।


यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।


यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।


यदि A सममित आव्यूह है तो B′AB ______ है।


एक आव्यूह एक संख्या को निरूपित करता है।


दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।


यदि आव्यूह AB = O, तब A = O या B = O या दोनों A और B शून्य आव्यूह हैं।


एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×