Advertisements
Advertisements
प्रश्न
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)
उत्तर
हमारे पास, A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` और C = `[(1, 0),(-1, 0)]`
AB = `[(1, 2),(-2, 1)] [(2, 3),(3, -4)]`
= `[(2 + 6, 3 - 8),(-4 + 3, -6 - 4)]`
= `[(8, -5),(-1, -10)]`
और (AB)C = `[(8, -5),(-1, -10)] [(1, 0),(-1, 0)]`
= `[(8 + 5, 0),(-1 + 10, 0)]`
= `[(13, 0),(9, 0)]` .....(i)
फिर, (BC) = `[(2, 3),(3, -4)] [(1, 0),(-1, 0)]`
= `[(2 - 3, 0),(3 + 4, 0)]`
= `[(-1, 0),(7, 0)]`
और A(BC) = `[(1, 2),(-2, 1)] [(-1, 0),(7, 0)]`
= `[(-1 + 14, 0),(2 + 7, 0)]`
= `[(13, 0),(9, 0)]` ......(ii)
(I) और (ii) से, हम प्राप्त करते हैं
∴ (AB)C= A(BC)
APPEARS IN
संबंधित प्रश्न
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयवों की संख्या लिखिए।
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
आव्यूह A, B और C के ऐसे उदाहरण दीजिए जो इस प्रकार हों कि AB = BC, जहाँ A एक शून्येतर आव्यूह है, परंतु B ≠ C है।
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
यदि P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` और Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]` तो सिद्ध कीजिए कि PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP.
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (kA)' = (kA')
सिद्ध कीजिए कि किसी भी आव्यूह A के लिए A′A तथा AA′ दोनों ही सममित आव्यूह हैं।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।
______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।
किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
एक आव्यूह एक संख्या को निरूपित करता है।
दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।