English

यदि a = [12-21], b = [233-4] और c = [10-10], हों तो सत्यापित कीजिए: (AB) C = A (BC) - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)

Sum

Solution

हमारे पास, A = `[(1, 2),(-2, 1)]`, B = `[(2, 3),(3, -4)]` और C = `[(1, 0),(-1, 0)]`

AB = `[(1, 2),(-2, 1)] [(2, 3),(3, -4)]`

= `[(2 + 6, 3 - 8),(-4 + 3, -6 - 4)]`

= `[(8, -5),(-1, -10)]`

और (AB)C = `[(8, -5),(-1, -10)] [(1, 0),(-1, 0)]`

= `[(8 + 5, 0),(-1 + 10, 0)]`

= `[(13, 0),(9, 0)]`  .....(i)

फिर, (BC) = `[(2, 3),(3, -4)] [(1, 0),(-1, 0)]`

= `[(2 - 3, 0),(3 + 4, 0)]`

= `[(-1, 0),(7, 0)]`

और A(BC) = `[(1, 2),(-2, 1)] [(-1, 0),(7, 0)]`

= `[(-1 + 14, 0),(2 + 7, 0)]`

= `[(13, 0),(9, 0)]`  ......(ii)

(I) और (ii) से, हम प्राप्त करते हैं

∴ (AB)C= A(BC)

shaalaa.com
आव्यूह
  Is there an error in this question or solution?
Chapter 3: आव्यूह - प्रश्नावली [Page 55]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 3 आव्यूह
प्रश्नावली | Q 22. (i) | Page 55

RELATED QUESTIONS

आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।


यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।


समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C 


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयवों की संख्या लिखिए।


एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।


एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो  ज्ञात कीजिए कि एक आव्यूह Z जो इस प्रकार हो कि X + Y + Z एक शून्य आव्यूह हो।


आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।


एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।


यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?


यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`  है तो सत्यापित कीजिए कि   A2 + A = A(A + I), जहाँ I एक 3 × 3  तत्समक आव्यूह है।


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′


माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT 


यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`


यदि A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` और x2 = –1 हो तो दिखाइए कि (A + B)2 = A2 + B2


यदि A = `[(1, 5),(7, 12)]` और B `[(9, 1),(7, 8)]` हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो।


यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn 


आव्यूह P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]` है।


यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)


दो विषम सममित आव्यूहों का योग सदैव ______ आव्यूह होता है।


यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)


यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।


यदि A और B सममित आव्यूह हैं तो BA – 2AB ______ है।


आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×