Advertisements
Advertisements
Question
यदि A = `[(1, 5),(7, 12)]` और B `[(9, 1),(7, 8)]` हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो।
Solution
आव्यूह A और B का क्रम 2 × 2 है
∴ आव्यूह C का क्रम 2 × 2 होना चाहिए।
चलो C = `[("a", "b"),("c", "d")]`
∴ 3A + 5B + 2C = 0
⇒ `3[(1, 5),(7, 12)] + 5[(9, 1),(7, 8)] + 2[("a", "b"),("c", "d")] = [(0, 0),(0, 0)]`
⇒ `[(3, 15),(21, 36)] + [(45, 5),(35, 40)] + [(2"a", 2"b"),(2"c", 2"")] = [(0, 0),(0, 0)]`
⇒ `[(3 + 45 + 2"a", 15 + 5 + 2"b"),(21 + 35 + 2"c", 36 + 40 + 2"d")] = [(0, 0),(0, 0)]`
⇒`[(48 + 2"a", 20 + 2"b"),(56 + 2"c", 76 + 2"d")] = [(0, 0),(0, 0)]`
संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं,
48 + 2a = 0
⇒ 2a = – 48
⇒ a = – 24
20 + 2b = 0
⇒ 2b = – 20
⇒ b = – 10
56 + 2c = 0
⇒ 2c = – 56
⇒ c = – 28
76 + 2d = 0
⇒ 2d = – 76
⇒ d = – 38
अत: C = `[(-2, -10),(-2, -38)]`
APPEARS IN
RELATED QUESTIONS
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
यदि दो आव्यूह A और B समान कोटि के हैं तब 2A + B = B + 2A.
आव्यूहों का व्यवकलन साहचर्य होता है।
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयवों की संख्या लिखिए।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
सिद्ध कीजिए कि किसी भी आव्यूह A के लिए A′A तथा AA′ दोनों ही सममित आव्यूह हैं।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AT)T = A
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT
यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।
यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो α का मान ज्ञात कीजिए।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
एक आव्यूह जो आवश्यक नहीं कि वर्ग आव्यूह हो एक ______ आव्यूह कहलाता है।
एक आव्यूह एक संख्या को निरूपित करता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।
यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′
यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।