Advertisements
Advertisements
Question
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
Solution
A2 = A × A = `[(1, 3, 2),(2, 0, -1),(1, 2, 3)] xx [(1, 3, 2),(2, 0, -1),(1, 2, 3)]`
= `[(1 + 6 + 2, 3 + 0 + 4, 2 - 3 + 6),(2+ 0 - 1, 6 + 0 - 2, 4 + 0 - 3),(1 + 4 + 3, 3 + 0 + 6, 2 - 2 + 9)]`
= `[(9, 7, 5),(1, 4, 1),(8, 9, 9)]`
और A3 = A2 × A = `[(9, 7, 5),(1, 4, 1),(8, 9, 9)] xx [(1, 3, 2),(2, 0, -1),(1, 2, 3)]`
= `[(9 + 14 + 5, 27 + 0 + 10, 18 - 7 + 15),(1 + 8 + 1, 3 + 0 + 2, 2 - 4 + 3),(8 + 18 + 9, 24 + 0 + 18, 16 - 9 + 27)]`
= `[(28, 37, 26),(10, 5, 1),(35, 42, 34)]`
अब A3 – 4A2 – 3A + 11(I)
= `[(28, 37, 36),(10, 5, 1),(35, 42, 34)] -4[(9, 7, 5),(1, 4, 1),(8, 9, 9)] -3[(1, 3, 2),(2, 0, -1),(1, 2, 3)] +11[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
= `[(28 - 36 - 3 + 11, 37 - 28 - 9 + 0, 26 - 20 - 6 + 0),(10 - 4 - 6 + 0, 5 - 16 + 0 + 11, 1 - 4 + 3 + 0),(35 - 32 - 3 + 0, 42 - 36 - 6 + 0, 34 + 36 - 9 + 11)]`
= `[(0, 0, 0),(0, 0, 0),(0, 0, 0)]` = O
APPEARS IN
RELATED QUESTIONS
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
यदि दो आव्यूह A और B समान कोटि के हैं तब 2A + B = B + 2A.
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयवों की संख्या लिखिए।
यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
यदि A = `[(3, -4),(1, 1),(2, 0)]` और B = `[(2, 1, 2),(1, 2, 4)]`, हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
आव्यूह A, B और C के ऐसे उदाहरण दीजिए जो इस प्रकार हों कि AB = BC, जहाँ A एक शून्येतर आव्यूह है, परंतु B ≠ C है।
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = A
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।
आव्यूह P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]` है।
यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।
प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।
एक आव्यूह जो आवश्यक नहीं कि वर्ग आव्यूह हो एक ______ आव्यूह कहलाता है।
यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।
एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।
यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।