Advertisements
Advertisements
Question
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
Solution
दिया गया है:: A = `[(3, -5),(-4, 2)]`
A2 = A . A
= `[(3, -5),(-4, 2)] [(3, -5),(-4, 2)]`
= `[(9 + 20, -15 - 10),(-12 - 8, 20 + 4)]`
= `[(29, -25),(-20, 24)]`
∴ A2 – 5A – 14I = `[(29, -25),(-20, -24)] -5[(3, -5),(-4, 2)] -14[(1, 0),(0, 1)]`
= `[(29, -25),(-20, 24)] - [(15, -25),(-20, 10)] - [(14, 0),(0, 14)]`
= `[(29, -25),(-20, 24)] - [(29, -25),(-20, 24)]`
= `[(29 - 29, -25 + 25),(-20 + 20, 24 - 24)]`
= `[(0, 0),(0, 0)]`
अत: A2 – 5A – 14I = 0
अब, दोनों पक्षों को A से गुणा करने पर, हम प्राप्त करते हैं,
A2 . A – 5A . A – 14IA = 0A
⇒ A3 – 5A2 – 14A = 0
⇒ A3 = 5A2 + 14A
⇒ A3 = `5[(29, -25),(-20, 24)] + 14[(3, -5),(-4, -2)]`
= `[(145, -125),(-100, 120)] + [(42, -70),(-56, 28)]`
= `[(145 + 42, -125 - 70),(-100 - 56, 120 + 28)]`
= `[(187, -195),(-156, 148)]`
अत: A3 = `[(187, -195),(-156, 148)]`
APPEARS IN
RELATED QUESTIONS
यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो X + Y ज्ञात कीजिए।
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (kA)' = (kA')
माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, 3),(-5, 7)]`
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, -3),(-2, 6)]`
यदि A = `[(1, 5),(7, 12)]` और B `[(9, 1),(7, 8)]` हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो।
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
आव्यूह P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]` है।
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।
______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
एक आव्यूह एक संख्या को निरूपित करता है।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।
यदि A और B समान कोटि के दो वर्ग आव्यूह हैं तब AB = BA है।
यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।