Advertisements
Advertisements
Question
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
Solution
यदि A और B सममित आव्यूह हैं तो AB – BA विषम सममित आव्यूह है।
व्याख्या:
मान लीजिए P = (AB – BA)
P' = (AB – BA)'
= (AB)' – (BA)'
= B'A' – A'B'' ......[∵ (AB)' = B'A']
= BA – AB ......[∵ A' = A और B' = B]
= –(AB – BA)
= –P
APPEARS IN
RELATED QUESTIONS
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]` है तो सत्यापित कीजिए कि A2 + A = A(A + I), जहाँ I एक 3 × 3 तत्समक आव्यूह है।
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (2A + B)′ = 2A′ + B′
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT
यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
यदि `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, हो तो x तथा y के मान होंगे।
किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
आव्यूहों का गुणनफल, योग का ______ करता है।
यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
एक आव्यूह एक संख्या को निरूपित करता है।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।
यदि A = `[(2, 3, -1),(1, 4, 2)]` और B = `[(2, 3),(4, 5),(2, 1)]`, तब AB और BA, दोनों परिभाषित हैं तथा समान हैं।