English

यदि A = [12-13], B = [4015], C = [201-2] तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT - Mathematics (गणित)

Advertisements
Advertisements

Question

यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT

Sum

Solution

हमारे पास है,

A = `[(1, 2),(-1, 3)]`

B = `[(4, 0),(1, 5)]`

C = `[(2, 0),(1, -2)]`

और a = 4, b = –2

AB = `[(1, 2),(-1, 3)] [(4, 0),(1, 5)]`

= `[(4 + 2, 0 + 10),(-4 + 3, 0 + 15)]`

= `[(6, 10),(-1, 15)]`

∴ (AB)T = `[(6, -1),(10, 15)]`

अब, BTA= `[(4, 1),(0, 5)] [(1, -1),(2, 3)]`

= `[(4 + 2, -4 + 3),(0 + 10, 0 + 15)]`

= `[(6, -1),(10, 15)]`

= (AB)T 

इसलिए साबित हुआ।

shaalaa.com
आव्यूह
  Is there an error in this question or solution?
Chapter 3: आव्यूह - प्रश्नावली [Page 56]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 3 आव्यूह
प्रश्नावली | Q 32. (g) | Page 56

RELATED QUESTIONS

आव्यूह  A = [aij]2×2 की रचना कीजिए  जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.


यदि A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, हों तो A + B, B + C, C + D और B + D योगफलों में कौन से योगफल परिभाषित हैं।


आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।


आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो 2X – 3Y ज्ञात कीजिए।


यदि A = `[(3, -4),(1, 1),(2, 0)]` और B = `[(2, 1, 2),(1, 2, 4)]`, हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2 


x तथा y के लिए हल कीजिए।

`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


यदि P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` और Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]` तो सिद्ध कीजिए कि PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP.


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A + (B + C) = (A + B) + C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C


यदि A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` और x2 = –1 हो तो दिखाइए कि (A + B)2 = A2 + B2


A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I


यदि A = `[(1, 5),(7, 12)]` और B `[(9, 1),(7, 8)]` हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो।


यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।


यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो  α का मान ज्ञात कीजिए।


यदि `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]` एक विषम सममित आव्यूह हो तो  a, b और c के मान ज्ञात कीजिए।


यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I


यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।


यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1  "यदि i" ≠ "j" ),( 0  "यदि i" ≠ "j" ):]` तब A2 बराबर है।


प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण

`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।


किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।


किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।


यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।


यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।


यदि A सममित आव्यूह है तो B′AB ______ है।


एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।


यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×