English

आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = [24-67351-24] है। - Mathematics (गणित)

Advertisements
Advertisements

Question

आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।

Sum

Solution

हम जानते हैं कि यदि A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`

है तब A' = `[(2, 7, 1),(4, 3, -2),(-6, 5, 4)]`

अत:, `("A" + "A'")/2 = 1/2 [(4, 11, -5),(11, 6, 3),(-5, 3, 8)]`

= `[(2, 11/2, (-5)/2),(11/2, 3, 3/2),((-5)/2, 3/2, 4)]`

तथा `("A" - "A'")/2 = 1/2 [(0, -3, -7),(3, 0, 7/2),(7, -7, 0)]`

= `[(0, (-3)/2, (-7)/2),(3/2, 0, 7/2),(7/2, (-7)/2, 0)]`

इस प्रकार,

`("A" + "A'")/2 + ("A" - "A'")/2 = [(2, 11/2, (-5)/2),(11/2, 3, 3/2),((-5)/2, 3/2, 4)] + [(0, (-3)/2, (-7)/2),(3/2, 0, 7/2),(7/2, (-7)/2, 0)]`

= `[(2, 4, -6),(7, 3,5),(1,-2, 4)]`

= A

shaalaa.com
आव्यूह
  Is there an error in this question or solution?
Chapter 3: आव्यूह - हल किए हुए उदाहरण [Page 47]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 3 आव्यूह
हल किए हुए उदाहरण | Q 6 | Page 47

RELATED QUESTIONS

यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।


यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक


यदि दो आव्यूह A और B समान कोटि के हैं तब 2A + B = B + 2A.


समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C 


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयव a23, a31, a12  लिखिए।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो  ज्ञात कीजिए कि एक आव्यूह Z जो इस प्रकार हो कि X + Y + Z एक शून्य आव्यूह हो।


दर्शाइए कि यदि `[(1, x, 1)] [(1, 3, 2),(2, 5,1),(15, 3, 2)] [(1),(2),(x)]` = O हो तो x का मान ज्ञात कीजिए।


दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।


यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।


माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A + (B + C) = (A + B) + C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT


A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I


प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:

`[(1, -3),(-2, 6)]`


यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।


यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।


आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


यदि `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, हो तो x तथा y के मान होंगे।


यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।


किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।


एक आव्यूह जो आवश्यक नहीं कि वर्ग आव्यूह हो एक ______ आव्यूह कहलाता है।


यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।


यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______


यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।


किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।


यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।


एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×