Advertisements
Advertisements
प्रश्न
आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।
उत्तर
हम जानते हैं कि यदि A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]`
है तब A' = `[(2, 7, 1),(4, 3, -2),(-6, 5, 4)]`
अत:, `("A" + "A'")/2 = 1/2 [(4, 11, -5),(11, 6, 3),(-5, 3, 8)]`
= `[(2, 11/2, (-5)/2),(11/2, 3, 3/2),((-5)/2, 3/2, 4)]`
तथा `("A" - "A'")/2 = 1/2 [(0, -3, -7),(3, 0, 7/2),(7, -7, 0)]`
= `[(0, (-3)/2, (-7)/2),(3/2, 0, 7/2),(7/2, (-7)/2, 0)]`
इस प्रकार,
`("A" + "A'")/2 + ("A" - "A'")/2 = [(2, 11/2, (-5)/2),(11/2, 3, 3/2),((-5)/2, 3/2, 4)] + [(0, (-3)/2, (-7)/2),(3/2, 0, 7/2),(7/2, (-7)/2, 0)]`
= `[(2, 4, -6),(7, 3,5),(1,-2, 4)]`
= A
APPEARS IN
संबंधित प्रश्न
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो X + Y ज्ञात कीजिए।
यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
यदि P = `[(x, 0, 0),(0, y, 0),(0, 0, z)]` और Q = `[("a", 0, 0),(0, "b", 0),(0, 0, "c")]` तो सिद्ध कीजिए कि PQ = `[(x"a", 0, 0),(0, y"b", 0),(0, 0, z"c")]` = QP.
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (A – B)′ = A′ – B′
दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A + (B + C) = (A + B) + C
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B) C = AC – BC
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT
यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो α का मान ज्ञात कीजिए।
यदि P(x) = `[(cosx, sinx),(-sinx, cosx)]`, हो तो दिखाइए कि P(x) . (y) = P(x + y) = P(y) . P(x)
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।
यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।
यदि A और B समान कोटि के दो वर्ग आव्यूह हैं तब AB = BA है।
यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।