Advertisements
Advertisements
प्रश्न
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
उत्तर
दिया गया है: `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`
`[(3"a", 3"b"),(3"c", 3"d")] = [("a" + 4, 6 + "a" + "b"),(-1 + "c" + "d", 2"d" + 3)]`
संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं,
3a = a + 4
⇒ 3a – a = 4
⇒ 2a = 4
⇒ a = 2
3b = 6 + a + b
⇒ 3b – b – a = 6
⇒ 2b – a = 6
⇒ 2b – 2 = 6
⇒ 2b = 8
⇒ b = 4
3c = – 1 + c + d
⇒ 3c – c – d = – 1
⇒ 2c – d = – 1
और 3d = 2d + 3
⇒ 3d – 2d = 3
⇒ d = 3
अब 2c – d = – 1
⇒ 2c – 3 = – 1
⇒ 2c = 3 – 1
⇒ 2c = 2
∴ c = 1
∴ a = 2, b = 4, c = 1 और d = 3.
APPEARS IN
संबंधित प्रश्न
यदि A = `[(2, -1, 3),(-4, 5, 1)]` और B = `[(2, 3),(4, -2),(1, 5)]` तब
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयव a23, a31, a12 लिखिए।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो ज्ञात कीजिए कि एक आव्यूह Z जो इस प्रकार हो कि X + Y + Z एक शून्य आव्यूह हो।
यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.
दर्शाइए कि यदि `[(1, x, 1)] [(1, 3, 2),(2, 5,1),(15, 3, 2)] [(1),(2),(x)]` = O हो तो x का मान ज्ञात कीजिए।
एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)
यदि A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` और C = `[(-1, 2, 1),(1, 0, 2)]` हो तो सत्यापित कीजिए कि A(B + C) = (AB + AC)
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, -3),(-2, 6)]`
यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
एक आव्यूह एक संख्या को निरूपित करता है।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।