Advertisements
Advertisements
प्रश्न
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
उत्तर
यह देखते हुए:: x = `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
L.H.S. `x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
⇒ `[(2x),(x)] + [(3y),(5y)] + [(-8),(-11)]` = O
⇒ `[(2x + 3y - 8),(x + 5y - 11)] =[(0),(0)]`
दोनों पक्षों के संबंधित तत्वों की तुलना करते हुए, हम प्राप्त करते हैं,
2x + 3y – 8 = 0
⇒ 2x + 3y = 8 .....(1)
x + 5y – 11 = 0
⇒ x + 5y = 11 ......(2)
समीकरण (1) को 1 और समीकरण (2) से 2, और फिर घटाने पर, हम प्राप्त करते हैं,
2x + 3y = 8
2x + 10y = 22
(–) (–) (–)
–7y = –14
∴ y = 2
Y = 2 को समीकरण (2) में हमें मिलता है,
x + 5 × 2 = 11
⇒ x + 10 = 11
x = 11 – 10 = 1
इसलिए, x और y के मान क्रमशः 1 और 2 हैं।
APPEARS IN
संबंधित प्रश्न
यदि A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, हों तो A + B, B + C, C + D और B + D योगफलों में कौन से योगफल परिभाषित हैं।
यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयव a23, a31, a12 लिखिए।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.
दर्शाइए कि यदि `[(1, x, 1)] [(1, 3, 2),(2, 5,1),(15, 3, 2)] [(1),(2),(x)]` = O हो तो x का मान ज्ञात कीजिए।
दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।
आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
यदि A = `[(3, 5)]`, B = `[(7, 3)]`, हों तो एक शून्येतर आव्यूह C ज्ञात कीजिए जो इस प्रकार हो कि AC = BC.
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AT)T = A
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT
गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N
यदि `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]` एक विषम सममित आव्यूह हो तो a, b और c के मान ज्ञात कीजिए।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
कोटि 3 × 3 के सभी संभव आव्यूहों की संख्या जिनकी प्रत्येक प्रविष्ठि 2 या 0 हो, होगी।
यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1 "यदि i" ≠ "j" ),( 0 "यदि i" ≠ "j" ):]` तब A2 बराबर है।
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
यदि A और B सममित आव्यूह हैं तो BA – 2AB ______ है।
यदि A और B समान कोटि के सममित आव्यूह हें तो AB सममित आव्यूह होगा यदि और केवल यदि ______
यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।
यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।