हिंदी

यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए। 2X + 3Y = [2340], 3Y + 2Y = [-221-5] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`

योग

उत्तर

मान लें कि,

2X + 3Y = `[(2, 3),(4, 0)]`   ......(1)

3Y + 2Y = `[(-2, 2),(1, -5)]`   ......(2)

समीकरण (1) से 3 और समीकरण (2) को 2 से गुणा करना हम प्राप्त करते हैं,

3[2X + 3Y] = `3[(2, 3),(4, 0)]`

⇒ 6X + 9Y = `[(6, 9),(12, 0)]`  ....(3)

2[3X + 2Y] = `2[(-2, 2),(1, -5)]`

⇒ 6X + 4Y = `[(-4, 4),(2, -10)]`  .....(4)

समीकरण को घटाने पर (4) समीकरण से (3) हमें मिलता है

5Y = `[(6 + 4, 9 - 4),(12 - 2, 0 + 10)]`

5Y = `[(10, 5),(10, 10)]`

⇒ Y = `[(2, 1),(2, 2)]` 

अब, समीकरण में y का मान डालते हुए (1) हमें मिलता है,

`2"X" + 3 [(2, 1),(2, 2)] = [(2, 3),(4, 0)]`

⇒ `2"X" + [(6, 3),(6, 60)] = [(2, 3),(4, 0)]`

⇒ 2X = `[(2, 3),(4, 0)] - [(6, 3),(6, 6)]`

⇒ 2X = `[(2 - 6, 3 - 3),(4 - 6, 0 - 6)]`

⇒ 2X = `[(-4,0),(-2, -6)]`

⇒  = `1/2 [(-4, 0),(-2, -6)]`

⇒ X = `[(-2, 0),(-1, -3)]`

इसलिए, X = `[(-2, 0),(-1, -3)]` और Y = `[(2, 1),(2, 2)]`

shaalaa.com
आव्यूह
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: आव्यूह - प्रश्नावली [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 3 आव्यूह
प्रश्नावली | Q 19 | पृष्ठ ५४

संबंधित प्रश्न

आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।


यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक


यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______


यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______


आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।


यदि संभव हो, तो A और B आव्यूहों का योग ज्ञात कीजिए, जहाँ A = `[(sqrt(3), 1),(2, 3)]`, और B = `[(x, y, z),(a, "b", 6)]` है।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो  ज्ञात कीजिए कि एक आव्यूह Z जो इस प्रकार हो कि X + Y + Z एक शून्य आव्यूह हो।


दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।


एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।


यदि `[(2, 1, 3)] [(-1, 0, -1),(-1, 1, 0),(0, 1, 1)] [(1),(0),(-1)]` = A हो तो A ज्ञात कीजिए।


यदि A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` और C = `[(-1, 2, 1),(1, 0, 2)]` हो तो सत्यापित कीजिए कि A(B + C) = (AB + AC)


यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (A – B)′ = A′ – B′


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB


यदि P(x) = `[(cosx, sinx),(-sinx, cosx)]`, हो तो दिखाइए कि P(x) . (y) = P(x + y) = P(y) . P(x)


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


कोटि 3 × 3 के सभी संभव आव्यूहों की संख्या जिनकी प्रत्येक प्रविष्ठि 2 या 0 हो, होगी।


यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।


आव्यूहों का गुणनफल, योग का ______ करता है।


यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।


यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______


यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।


एक आव्यूह एक संख्या को निरूपित करता है।


आव्यूहों का गुणन क्रम विनिमेय होता है।


यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।


यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×