Advertisements
Advertisements
प्रश्न
यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।
विकल्प
I
0
2 I
`1/2 "I"`
उत्तर
सही उत्तर `1/2 "I"` है।
व्याख्या:
दिया गया है: A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`
और B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]`
A – B = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))] - 1/pi[(-cos^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), -tan^-1(pix))]`
= `1/pi [(sin^-1(xpi) + cos^-1(xpi), tan^-1(x/pi) - tan^-1(x/pi)),(sin^-1(x/pi) -sin^-1(x/pi), cot^-1(pix) + tan^-1(pix))]`
= `1/pi[(pi/2, 0),(0, pi/2)]` ......`[("क्योंकि" sin^-1x + cos^-1x = pi/2),(tan^-1x + cot^-1x = pi/2)]`
= `1/pi xx pi/2 [(1, 0),(0, 1)]`
= `1/2"I"`
APPEARS IN
संबंधित प्रश्न
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
सिद्ध कीजिए यदि एक आव्यूह सममित तथा विषम सममित दोनों ही हो तो वह एक शून्य आव्यूह है।
आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
यदि A = `[(2, -1, 3),(-4, 5, 1)]` और B = `[(2, 3),(4, -2),(1, 5)]` तब
यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि A = `[(3, 5)]`, B = `[(7, 3)]`, हों तो एक शून्येतर आव्यूह C ज्ञात कीजिए जो इस प्रकार हो कि AC = BC.
यदि A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` और C = `[(-1, 2, 1),(1, 0, 2)]` हो तो सत्यापित कीजिए कि A(B + C) = (AB + AC)
माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B) C = AC – BC
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, 3),(-5, 7)]`
यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो α का मान ज्ञात कीजिए।
यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
यदि A सममित आव्यूह है तो B′AB ______ है।
एक आव्यूह एक संख्या को निरूपित करता है।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
यदि A और B समान कोटि के दो वर्ग आव्यूह हैं तब AB = BA है।