Advertisements
Advertisements
प्रश्न
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
उत्तर
यदि A एक सममित आव्यूह है तो A3 एक सममित आव्यूह होगा।
व्याख्या:
दिया गया A सममित आव्यूह है।
∴ A' = –A
अब (A3)' = (A')3 .....[∵ (A')n = (An)']
= A3
APPEARS IN
संबंधित प्रश्न
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
यदि A = `[(2, -1, 3),(-4, 5, 1)]` और B = `[(2, 3),(4, -2),(1, 5)]` तब
यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक
यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______
यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
यदि दो आव्यूह A और B समान कोटि के हैं तब 2A + B = B + 2A.
एक व्युत्क्रमणीय आव्यूह A के लिए, (A′)-1 = (A-1)′
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयवों की संख्या लिखिए।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
यदि A = `[(3, 5)]`, B = `[(7, 3)]`, हों तो एक शून्येतर आव्यूह C ज्ञात कीजिए जो इस प्रकार हो कि AC = BC.
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (kA)' = (kA')
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]` एक विषम सममित आव्यूह हो तो a, b और c के मान ज्ञात कीजिए।
यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I
यदि `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, हो तो x तथा y के मान होंगे।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।
यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।
यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।