Advertisements
Advertisements
प्रश्न
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
उत्तर
दिया गया है:: A = `[(3, -5),(-4, 2)]`
A2 = A . A
= `[(3, -5),(-4, 2)] [(3, -5),(-4, 2)]`
= `[(9 + 20, -15 - 10),(-12 - 8, 20 + 4)]`
= `[(29, -25),(-20, 24)]`
∴ A2 – 5A – 14I = `[(29, -25),(-20, -24)] -5[(3, -5),(-4, 2)] -14[(1, 0),(0, 1)]`
= `[(29, -25),(-20, 24)] - [(15, -25),(-20, 10)] - [(14, 0),(0, 14)]`
= `[(29, -25),(-20, 24)] - [(29, -25),(-20, 24)]`
= `[(29 - 29, -25 + 25),(-20 + 20, 24 - 24)]`
= `[(0, 0),(0, 0)]`
अत: A2 – 5A – 14I = 0
अब, दोनों पक्षों को A से गुणा करने पर, हम प्राप्त करते हैं,
A2 . A – 5A . A – 14IA = 0A
⇒ A3 – 5A2 – 14A = 0
⇒ A3 = 5A2 + 14A
⇒ A3 = `5[(29, -25),(-20, 24)] + 14[(3, -5),(-4, -2)]`
= `[(145, -125),(-100, 120)] + [(42, -70),(-56, 28)]`
= `[(145 + 42, -125 - 70),(-100 - 56, 120 + 28)]`
= `[(187, -195),(-156, 148)]`
अत: A3 = `[(187, -195),(-156, 148)]`
APPEARS IN
संबंधित प्रश्न
आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।
यदि A = `[(2, -1, 3),(-4, 5, 1)]` और B = `[(2, 3),(4, -2),(1, 5)]` तब
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।
यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.
दर्शाइए कि A = `[(5, 3),(-1, -2)]` समीकरण A2 - 3A - 7I = O को संतुष्ट करता है और इसके प्रयोग से A-1 ज्ञात कीजिए।
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (A – B)′ = A′ – B′
सिद्ध कीजिए कि किसी भी आव्यूह A के लिए A′A तथा AA′ दोनों ही सममित आव्यूह हैं।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT
यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, -3),(-2, 6)]`
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1 "यदि i" ≠ "j" ),( 0 "यदि i" ≠ "j" ):]` तब A2 बराबर है।
आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
यदि A और B समान कोटि के दो वर्ग आव्यूह हैं तब AB = BA है।
यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′