हिंदी

यदि A = [15712] और B [9178] हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो। - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A = `[(1, 5),(7, 12)]` और B `[(9, 1),(7, 8)]` हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो।

योग

उत्तर

आव्यूह A और B का क्रम 2 × 2 है

∴ आव्यूह C का क्रम 2 × 2 होना चाहिए।

चलो C = `[("a", "b"),("c", "d")]`

∴ 3A + 5B + 2C = 0

⇒ `3[(1, 5),(7, 12)] + 5[(9, 1),(7, 8)] + 2[("a", "b"),("c", "d")] = [(0, 0),(0, 0)]`

⇒ `[(3, 15),(21, 36)] + [(45, 5),(35, 40)] + [(2"a", 2"b"),(2"c", 2"")] = [(0, 0),(0, 0)]`

⇒ `[(3 + 45 + 2"a", 15 + 5 + 2"b"),(21 + 35 + 2"c", 36 + 40 + 2"d")] = [(0, 0),(0, 0)]`

⇒`[(48 + 2"a", 20 + 2"b"),(56 + 2"c", 76 + 2"d")] = [(0, 0),(0, 0)]`

संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं,

48 + 2a = 0

⇒ 2a = – 48

⇒ a = – 24

20 + 2b = 0

⇒ 2b = – 20

⇒ b = – 10

56 + 2c = 0

⇒ 2c = – 56

⇒ c = – 28

76 + 2d = 0

⇒ 2d = – 76

⇒ d = – 38

अत: C = `[(-2, -10),(-2, -38)]`

shaalaa.com
आव्यूह
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: आव्यूह - प्रश्नावली [पृष्ठ ५७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 3 आव्यूह
प्रश्नावली | Q 39 | पृष्ठ ५७

संबंधित प्रश्न

यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।


यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।


यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.     


यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।


यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?


यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`


यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.


यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = A


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (A – B)′ = A′ – B′


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB


यदि A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` और x2 = –1 हो तो दिखाइए कि (A + B)2 = A2 + B2


यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से  A3 ज्ञात कीजिए।


यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।


यदि `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]` एक विषम सममित आव्यूह हो तो  a, b और c के मान ज्ञात कीजिए।


यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`


यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।


यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1  "यदि i" ≠ "j" ),( 0  "यदि i" ≠ "j" ):]` तब A2 बराबर है।


आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक


आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`


प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण  `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।


यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।


दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।


यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×