Advertisements
Advertisements
प्रश्न
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
उत्तर
A2 = A × A = `[(1, 3, 2),(2, 0, -1),(1, 2, 3)] xx [(1, 3, 2),(2, 0, -1),(1, 2, 3)]`
= `[(1 + 6 + 2, 3 + 0 + 4, 2 - 3 + 6),(2+ 0 - 1, 6 + 0 - 2, 4 + 0 - 3),(1 + 4 + 3, 3 + 0 + 6, 2 - 2 + 9)]`
= `[(9, 7, 5),(1, 4, 1),(8, 9, 9)]`
और A3 = A2 × A = `[(9, 7, 5),(1, 4, 1),(8, 9, 9)] xx [(1, 3, 2),(2, 0, -1),(1, 2, 3)]`
= `[(9 + 14 + 5, 27 + 0 + 10, 18 - 7 + 15),(1 + 8 + 1, 3 + 0 + 2, 2 - 4 + 3),(8 + 18 + 9, 24 + 0 + 18, 16 - 9 + 27)]`
= `[(28, 37, 26),(10, 5, 1),(35, 42, 34)]`
अब A3 – 4A2 – 3A + 11(I)
= `[(28, 37, 36),(10, 5, 1),(35, 42, 34)] -4[(9, 7, 5),(1, 4, 1),(8, 9, 9)] -3[(1, 3, 2),(2, 0, -1),(1, 2, 3)] +11[(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
= `[(28 - 36 - 3 + 11, 37 - 28 - 9 + 0, 26 - 20 - 6 + 0),(10 - 4 - 6 + 0, 5 - 16 + 0 + 11, 1 - 4 + 3 + 0),(35 - 32 - 3 + 0, 42 - 36 - 6 + 0, 34 + 36 - 9 + 11)]`
= `[(0, 0, 0),(0, 0, 0),(0, 0, 0)]` = O
APPEARS IN
संबंधित प्रश्न
आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
यदि A = `[(2, -1, 3),(-4, 5, 1)]` और B = `[(2, 3),(4, -2),(1, 5)]` तब
एक व्युत्क्रमणीय आव्यूह A के लिए, (A′)-1 = (A-1)′
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयवों की संख्या लिखिए।
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
दर्शाइए कि यदि `[(1, x, 1)] [(1, 3, 2),(2, 5,1),(15, 3, 2)] [(1),(2),(x)]` = O हो तो x का मान ज्ञात कीजिए।
आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।
यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?
यदि `[(2, 1, 3)] [(-1, 0, -1),(-1, 1, 0),(0, 1, 1)] [(1),(0),(-1)]` = A हो तो A ज्ञात कीजिए।
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = A
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, -3),(-2, 6)]`
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
दो विषम सममित आव्यूहों का योग सदैव ______ आव्यूह होता है।
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
यदि आव्यूह AB = O, तब A = O या B = O या दोनों A और B शून्य आव्यूह हैं।
यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।
किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।
यदि A = `[(2, 3, -1),(1, 4, 2)]` और B = `[(2, 3),(4, 5),(2, 1)]`, तब AB और BA, दोनों परिभाषित हैं तथा समान हैं।