Advertisements
Advertisements
प्रश्न
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
उत्तर
आव्यूह का क्रम `[(2, -1),(1, 0),(-3, 4)]` और 3 × 2 आव्यूह है।
`[(-1, -8, -10),(1, -2, -5),(9, 22, 15)]` is 3 × 3
∴ आव्यूह A का क्रम 2 × 3 होना चाहिए।
मान लीजिए A = `[("a", "b", "c"),("d", "e", "f")]_(2 xx 3)`
तो, `[(2, -1),(1, 0),(-3, 4)] [("a", "b", "c"),("d", "e", "f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
`[(2"a" - "d", 2"b" - "e", 2"c" - "f"),("a" + 0, "b" + 0, "c" + 0),(-3"a" + 4"d", -3"b" + 4"e", -3"c" + 4"f")] = [(-1, -8, -10),(1, -2, -5),(9, 22, 5)]`
संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं,
2a – d = – 1 और a = 1
⇒ 2 × 1 – d = – 1
⇒ d = 2 + 1
⇒ d = 3
2b – e = – 8 और b = – 2
⇒ 2(– 2) – e
⇒ – 8
⇒ – 4 – e = – 8
⇒ e = 4
2c – f = – 10 और c = – 5
⇒ 2(– 5) – f = – 10
⇒ – 10 – f = – 10
⇒ f = 0
a = 1, b = – 2, c = – 5, d = 3, e = 4 और f = 0
अत: A = `[(1, -2, -5),(3, 4, 0)]`.
APPEARS IN
संबंधित प्रश्न
यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तो दिखाइए कि किसी भी अदिश k (शून्येतर) के लिए kA व्युत्क्रमणीय है तथा `("kA")^-1 = 1/"k" "A"^-1`
यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयव a23, a31, a12 लिखिए।
यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो X + Y ज्ञात कीजिए।
यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = A
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
सिद्ध कीजिए कि किसी भी आव्यूह A के लिए A′A तथा AA′ दोनों ही सममित आव्यूह हैं।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, 3),(-5, 7)]`
यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
यदि `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]` एक विषम सममित आव्यूह हो तो a, b और c के मान ज्ञात कीजिए।
यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।
दो विषम सममित आव्यूहों का योग सदैव ______ आव्यूह होता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)
यदि A सममित आव्यूह है तो B′AB ______ है।
एक आव्यूह एक संख्या को निरूपित करता है।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
यदि A और B समान कोटि के दो वर्ग आव्यूह हैं तब AB = BA है।
यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।