हिंदी

यदि A = [12-13], B = [4015], C = [201-2] तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT

योग

उत्तर

हमारे पास है,

A = `[(1, 2),(-1, 3)]`

B = `[(4, 0),(1, 5)]`

C = `[(2, 0),(1, -2)]`

और a = 4, b = –2

(bA)T = `[(-2, -4),(2, -6)]^"T"`  .....[∵ b = –2]

= `[(-2, 2),(-4, -6)]`

और A= `[(1, -1),(2, 3)]`

∴ bA= `[(-2, 2),(-4, -6)]`

= (bA)T 

इसलिए साबित हुआ।

shaalaa.com
आव्यूह
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: आव्यूह - प्रश्नावली [पृष्ठ ५६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 3 आव्यूह
प्रश्नावली | Q 32. (f) | पृष्ठ ५६

संबंधित प्रश्न

यदि A = `[(2, -1, 3),(-4, 5, 1)]`  और B = `[(2, 3),(4, -2),(1, 5)]` तब


आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।


आव्यूहों का व्यवकलन साहचर्य होता है।


यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?


एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।


एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।


एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।


यदि संभव हो, तो A और B आव्यूहों का योग ज्ञात कीजिए, जहाँ A = `[(sqrt(3), 1),(2, 3)]`, और B = `[(x, y, z),(a, "b", 6)]` है।


यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)


यदि `[(2, 1, 3)] [(-1, 0, -1),(-1, 1, 0),(0, 1, 1)] [(1),(0),(-1)]` = A हो तो A ज्ञात कीजिए।


यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'


दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C


यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।


यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से  A3 ज्ञात कीजिए।


यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो  α का मान ज्ञात कीजिए।


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


आव्यूह P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]` है।


कोटि 3 × 3 के सभी संभव आव्यूहों की संख्या जिनकी प्रत्येक प्रविष्ठि 2 या 0 हो, होगी।


आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`


यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।


प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण

`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।


______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।


यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______


यदि A और B समान कोटि के सममित आव्यूह हें तो AB सममित आव्यूह होगा यदि और केवल यदि ______


किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।


एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।


यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′


यदि A, B और C समान कोटि के वर्ग आव्यूह हैं तब AB = AC से सदैव B = C प्राप्त होता है।


(AB)–1 = A–1. B–1 जहाँ A और B व्यूत्क्रमणीय आव्यूह हैं जो गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×