Advertisements
Advertisements
प्रश्न
यदि A, B और C समान कोटि के वर्ग आव्यूह हैं तब AB = AC से सदैव B = C प्राप्त होता है।
विकल्प
सत्य
असत्य
उत्तर
यह कथन असत्य है।
व्याख्या:
मान लीजिए A = `[(1, 0),(0, 0)]`
B = `[(0, 0),(2, 0)]`
और C = `[(0, 0),(3, 4)]`
∴ AB = `[(1, 0),(0, 0)] [(0, 0),(2, 0)] = [(0, 0),(0, 0)]`
AC = `[(1, 0),(0, 0)] [(0, 0),(3, 4)] = [(0, 0),(0, 0)]`
यहाँ AB = AC = 0 लेकिन B ≠ C.
APPEARS IN
संबंधित प्रश्न
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
यदि दो आव्यूह A और B समान कोटि के हैं तब 2A + B = B + 2A.
आव्यूहों का व्यवकलन साहचर्य होता है।
एक व्युत्क्रमणीय आव्यूह A के लिए, (A′)-1 = (A-1)′
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।
यदि `[(2, 1, 3)] [(-1, 0, -1),(-1, 1, 0),(0, 1, 1)] [(1),(0),(-1)]` = A हो तो A ज्ञात कीजिए।
यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]` है तो सत्यापित कीजिए कि A2 + A = A(A + I), जहाँ I एक 3 × 3 तत्समक आव्यूह है।
दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA
यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`
यदि A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` और x2 = –1 हो तो दिखाइए कि (A + B)2 = A2 + B2.
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।
यदि `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, हो तो x तथा y के मान होंगे।
यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1 "यदि i" ≠ "j" ),( 0 "यदि i" ≠ "j" ):]` तब A2 बराबर है।
आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।
______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।
यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।