हिंदी

समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C 

विकल्प

  • सत्य

  • असत्य 

MCQ
सत्य या असत्य

उत्तर

यह कथन असत्य है।

shaalaa.com
आव्यूह
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: आव्यूह - हल किए हुए उदाहरण [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
अध्याय 3 आव्यूह
हल किए हुए उदाहरण | Q 19 | पृष्ठ ५२

संबंधित प्रश्न

यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।


यदि A = `[(2, -1, 3),(-4, 5, 1)]`  और B = `[(2, 3),(4, -2),(1, 5)]` तब


आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।


यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक


यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______


एक व्युत्क्रमणीय आव्यूह A के लिए, (A′)-1 = (A-1)′


यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो X + Y ज्ञात कीजिए।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो 2X – 3Y ज्ञात कीजिए।


आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।


आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।


एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।


x तथा y के लिए हल कीजिए।

`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O


यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.


यदि `[(2, 1, 3)] [(-1, 0, -1),(-1, 1, 0),(0, 1, 1)] [(1),(0),(-1)]` = A हो तो A ज्ञात कीजिए।


प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:

`[(1, 3),(-5, 7)]`


यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।


यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।


आव्यूह P = `[(0, 0, 4),(0, 4, 0),(4, 0, 0)]` है।


कोटि 3 × 3 के सभी संभव आव्यूहों की संख्या जिनकी प्रत्येक प्रविष्ठि 2 या 0 हो, होगी।


किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।


एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।


यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।


यदि आव्यूह AB = O, तब A = O या B = O या दोनों A और B शून्य आव्यूह हैं।


यदि A, B और C समान कोटि के वर्ग आव्यूह हैं तब AB = AC से सदैव B = C प्राप्त होता है।


यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×