Advertisements
Advertisements
प्रश्न
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
उत्तर
यहाँ, A =
हम A = IA डालते हैं।
R2 → R2 + R1
R3 → R3 – R2
R1 → R1 + R2
R1 → R1 + R2 और R3 → –1 . R3
R1 → R1 + 10R3 और R2 → R2 + 17R3
R1 → – 1.R1 और R2 → – 1.R2
अत: A–1 =
APPEARS IN
संबंधित प्रश्न
यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तो दिखाइए कि किसी भी अदिश k (शून्येतर) के लिए kA व्युत्क्रमणीय है तथा
यदि A =
यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक
आव्यूहों का व्यवकलन साहचर्य होता है।
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
यदि संभव हो, तो A और B आव्यूहों का योग ज्ञात कीजिए, जहाँ A =
यदि
यदि A =
यदि A =
यदि A =
यदि A =
यदि A =
A =
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
यदि A =
यदि A =
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
आव्यूह
यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।
आव्यूह
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।
(AB)–1 = A–1. B–1 जहाँ A और B व्यूत्क्रमणीय आव्यूह हैं जो गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।