Advertisements
Advertisements
Question
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
Solution
यहाँ, A = `[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]` प्रांरभिक पंक्ति परिवर्तन के लिए
हम A = IA डालते हैं।
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)] = [(1, 0, 0),(0, 1, 0),(0, 0, 1)]"A"`
R2 → R2 + R1
`[(2, -1, 3),(-3, 2, 4),(-3, 2, 3)] = [(1, 0, 0),(1, 1, 0),(0, 0, 1)]"A"`
R3 → R3 – R2
`[(2, -1, 3),(-3, 2, 4),(0, 0, -1)] = [(1, 0, 0),(1, 1, 0),(-1, -1, 1)]"A"`
R1 → R1 + R2
`[(-1, 1, 7),(0, -1, -17),(0, 0, -1)] = [(2, 1, 0),(-5, -2, 0),(-1, -1, 1)]"A"`
R1 → R1 + R2 और R3 → –1 . R3
`[(-1, 0, -10),(0, -1, -17),(0, 0, -1)] = [(-3, -1, 0),(-5, -2, 0),(-1, -1, 1)]"A"`
R1 → R1 + 10R3 और R2 → R2 + 17R3
`[(-1, 0, 0),(0, -1, 0),(0, 0, 1)] = [(7, 9, -10),(12, 15, -17),(1, 1, -1)]"A"`
R1 → – 1.R1 और R2 → – 1.R2
`[(1, 0, 0),(0, 1, 0),(0, 0, 1)] = [(-7, 9-, 10),(-12, -15, 17),(1, 1, -1)]"A"`
अत: A–1 = `[(-7, 9-, 10),(-12, -15, 17),(1, 1, -1)]`
APPEARS IN
RELATED QUESTIONS
सिद्ध कीजिए यदि एक आव्यूह सममित तथा विषम सममित दोनों ही हो तो वह एक शून्य आव्यूह है।
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
एक व्युत्क्रमणीय आव्यूह A के लिए, (A′)-1 = (A-1)′
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयव a23, a31, a12 लिखिए।
यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: (AB) C = A (BC)
यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]` है तो सत्यापित कीजिए कि A2 + A = A(A + I), जहाँ I एक 3 × 3 तत्समक आव्यूह है।
यदि A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` और x2 = –1 हो तो दिखाइए कि (A + B)2 = A2 + B2.
गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N
यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
यदि `[(2x + y, 4x),(5x - 7, 4x)] = [(7, 7y - 13),(y, x + 6)]`, हो तो x तथा y के मान होंगे।
आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
दो विषम सममित आव्यूहों का योग सदैव ______ आव्यूह होता है।
किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)
यदि A और B समान कोटि के सममित आव्यूह हें तो AB सममित आव्यूह होगा यदि और केवल यदि ______
दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।
यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।
यदि A = `[(2, 3, -1),(1, 4, 2)]` और B = `[(2, 3),(4, 5),(2, 1)]`, तब AB और BA, दोनों परिभाषित हैं तथा समान हैं।