Advertisements
Advertisements
Question
यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]` है तो सत्यापित कीजिए कि A2 + A = A(A + I), जहाँ I एक 3 × 3 तत्समक आव्यूह है।
Solution
हमारे पास, A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]`
∴ A2 = A · A
= `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] [(1, 0, -1),(2, 1, 3),(0, 1, 1)]`
= `[(1 + 0 + 0, 0 + 0 - 1, -1 + 0 - 1),(2 + 2 + 0, 0 + 1 + 3, -2 + 3 + 3),(0 + 2 + 0, 0 + 1 + 1, 0 + 3 + 1)]`
= `[(1, -1, -2),(4, 4, 4),(2, 2, 4)]`
∴ A2 + A = `[(1, -1, -2),(4, 4, 4),(2, 2, 4)] + [(1, 0, -4),(2, 1, 3),(0, 1, 1)]`
= `[(2, -1, -3),(6, 5, 7),(2, 3, 5)]` ......(i)
अब, A + I = `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] + [(1, 0, 0),(0, 1, 0),(0, 0, 1)]`
= `[(2, 0, -1),(2, 2, 3),(0, 1, 2)]`
तो, A(A + I) = `[(1, 0, -1),(2, 1, 3),(0, 1, 1)] [(2, 0, -1),(2, 2, 3),(0, 1, 2)]`
= `[(2 + 0 + 0, 0 + 0 - 1, -1 + 0 - 2),(4 + 2 + 0, 0 + 2 + 3, -2 + 3 + 6),(0 + 2 + 0, 0 + 2 + 1, 0 + 3 + 2)]`
= `[(2, -1, -3),(6, 5, 7),(2, 3, 5)]` .....(iii)
(i) और (ii) से
हमें A2 + A = A(A + I) मिलता है।
APPEARS IN
RELATED QUESTIONS
यदि `[(2x, 3)] [(1, 2),(-3, 0)] [(x),(8)]` = 0, हो तो x का मान निकालिए।
आव्यूह A को एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए जहाँ A = `[(2, 4, -6),(7, 3, 5),(1, -2, 4)]` है।
यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।
यदि A और B समान कोटि के दो सममित आव्यूह हैं, तब (AB′-BA′) है एक
यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
यदि A = B हों तो a और b के मान ज्ञात कीजिए, जहाँ A = `[("a" + 4, 3"b"),(8, -6)]` और B = `[(2"a" + 2, "b"^2 + 2),(8, "b"^2 - 5"b")]` हैं।
यदि संभव हो, तो A और B आव्यूहों का योग ज्ञात कीजिए, जहाँ A = `[(sqrt(3), 1),(2, 3)]`, और B = `[(x, y, z),(a, "b", 6)]` है।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो ज्ञात कीजिए कि एक आव्यूह Z जो इस प्रकार हो कि X + Y + Z एक शून्य आव्यूह हो।
दर्शाइए कि यदि `[(1, x, 1)] [(1, 3, 2),(2, 5,1),(15, 3, 2)] [(1),(2),(x)]` = O हो तो x का मान ज्ञात कीजिए।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि A = `[(3, 5)]`, B = `[(7, 3)]`, हों तो एक शून्येतर आव्यूह C ज्ञात कीजिए जो इस प्रकार हो कि AC = BC.
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (a + b)B = aB + bB
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT
यदि A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` और x2 = –1 हो तो दिखाइए कि (A + B)2 = A2 + B2.
गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि P(x) = `[(cosx, sinx),(-sinx, cosx)]`, हो तो दिखाइए कि P(x) . (y) = P(x + y) = P(y) . P(x)
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।
किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?
आव्यूहों का गुणनफल, योग का ______ करता है।
यदि A एक विषम सममित आव्यूह है तो A2 एक ______ है।
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।
किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।