Advertisements
Advertisements
Question
आव्यूहों का गुणनफल, योग का ______ करता है।
Solution
आव्यूहों का गुणनफल, योग का विभाजित करनेवाला करता है।
व्याख्या:
मान लीजिए A, B और C कोई भी आव्यूह है।
तो, (i) A(B + C) = AB + AC
(ii) (A + B)C = AC + BC
APPEARS IN
RELATED QUESTIONS
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
आव्यूह A, B और C के ऐसे उदाहरण दीजिए जो इस प्रकार हों कि AB = BC, जहाँ A एक शून्येतर आव्यूह है, परंतु B ≠ C है।
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (A – B)′ = A′ – B′
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B)T = AT – BT
यदि A = `[(0, -x),(x, 0)]`, B = `[(0, 1),(1, 0)]` और x2 = –1 हो तो दिखाइए कि (A + B)2 = A2 + B2.
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
यदि `[(0, "a", 3),(2, "b", -1),("c", 1, 0)]` एक विषम सममित आव्यूह हो तो a, b और c के मान ज्ञात कीजिए।
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।
यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।
यदि A, B और C समान कोटि के वर्ग आव्यूह हैं तब AB = AC से सदैव B = C प्राप्त होता है।
(AB)–1 = A–1. B–1 जहाँ A और B व्यूत्क्रमणीय आव्यूह हैं जो गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।