Advertisements
Advertisements
Question
(AB)–1 = A–1. B–1 जहाँ A और B व्यूत्क्रमणीय आव्यूह हैं जो गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।
Options
सत्य
असत्य
Solution
यह कथन सत्य है।
व्याख्या:
यदि A और B एक ही क्रम के व्युत्क्रमणीय आव्यूह हैं
∴ (AB)–1 = (BA)–1 ......[∵ AB = BA]
लेकिन (AB)–1 = A–1B–1
∴ (BA)–1 = B–1A–1
अत: A–1B–1 = B–1A–1
∴ A और B गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।
APPEARS IN
RELATED QUESTIONS
यदि A = `[(2, 3),(-1, 2)]`, तो दिखाइए कि A2 – 4A + 7I = O इस परिणाम का उपयोग करके A5 का मान भी निकालिए।
यदि A = `[(2, -1, 3),(-4, 5, 1)]` और B = `[(2, 3),(4, -2),(1, 5)]` तब
यदि A और B एक समान कोटि की दो विषम सममित आव्यूह हों तो AB एक सममित आव्यूह होगा यदि ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
आव्यूहों का व्यवकलन साहचर्य होता है।
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A के अवयव a23, a31, a12 लिखिए।
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।
यदि A = `[(3, -4),(1, 1),(2, 0)]` और B = `[(2, 1, 2),(1, 2, 4)]`, हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2
एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।
यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि (2A + B)′ = 2A′ + B′
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N
यदि P(x) = `[(cosx, sinx),(-sinx, cosx)]`, हो तो दिखाइए कि P(x) . (y) = P(x + y) = P(y) . P(x)
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।
यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (AB)′ = ______
यदि A सममित आव्यूह है तो B′AB ______ है।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
यदि A = `[(2, 3, -1),(1, 4, 2)]` और B = `[(2, 3),(4, 5),(2, 1)]`, तब AB और BA, दोनों परिभाषित हैं तथा समान हैं।