English

गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N - Mathematics (गणित)

Advertisements
Advertisements

Question

गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N

Sum

Solution

मान लीजिए P(n): (A′)n = (An)′

∴ P(1): (A′) = (A)′

⇒ A' = A'

⇒ P(1) सत्य है।

अब मान लीजिए P(k) = (A')k = (Ak)'

जहाँ k ∈ N 

और P(k + 1): (A')k+1 = (A')kA'

= (A')k'A'

= (AAk)'   .....(जैसा (AB)' = B'A')

= (Ak+1)'

इस प्रकार P(1) सत्य है और जब भी P(k) सत्य है P(k + 1) सत्य है,

अत: P(n) सभी n ∈ N के लिए सत्य है।

shaalaa.com
आव्यूह
  Is there an error in this question or solution?
Chapter 3: आव्यूह - प्रश्नावली [Page 56]

APPEARS IN

NCERT Exemplar Mathematics [Hindi] Class 12
Chapter 3 आव्यूह
प्रश्नावली | Q 36 | Page 56

RELATED QUESTIONS

यदि A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, हों तो A + B, B + C, C + D और B + D योगफलों में कौन से योगफल परिभाषित हैं।


यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तो दिखाइए कि किसी भी अदिश k (शून्येतर) के लिए kA व्युत्क्रमणीय है तथा `("kA")^-1 = 1/"k" "A"^-1`


यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।


यदि A = `[(2, -1, 3),(-4, 5, 1)]`  और B = `[(2, 3),(4, -2),(1, 5)]` तब


आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।


एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।


यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो X + Y ज्ञात कीजिए।


यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.     


यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.


यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (kA)' = (kA')


यदि A = `[(1, 2),(4, 1),(5, 6)]` तथा B = `[(1, 2),(6, 4),(7, 3)]` हों तो सत्यापित कीजिए कि  (2A + B)′ = 2A′ + B′


माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA


A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।


यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।


यदि A सममित आव्यूह है तो B′AB ______ है।


किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।


असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।


आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।


आव्यूहों का गुणन क्रम विनिमेय होता है।


एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।


यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′


यदि (AB)′ = B′ A′, जहाँ A और B वर्ग आव्यूह नहीं है तब A के पंक्तियों की संख्या B के स्तंभों की संख्या के बराबर होगी तथा A के स्तभों की संख्या B के पंक्तियों की संख्या के बराबर होगी।


यदि A = `[(2, 3, -1),(1, 4, 2)]` और B = `[(2, 3),(4, 5),(2, 1)]`, तब AB और BA, दोनों परिभाषित हैं तथा समान हैं।


यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।


(AB)–1 = A–1. B–1 जहाँ A और B व्यूत्क्रमणीय आव्यूह हैं जो गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×