मराठी

यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए। 2X + 3Y = [2340], 3Y + 2Y = [-221-5] - Mathematics (गणित)

Advertisements
Advertisements

प्रश्न

यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।

2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`

बेरीज

उत्तर

मान लें कि,

2X + 3Y = `[(2, 3),(4, 0)]`   ......(1)

3Y + 2Y = `[(-2, 2),(1, -5)]`   ......(2)

समीकरण (1) से 3 और समीकरण (2) को 2 से गुणा करना हम प्राप्त करते हैं,

3[2X + 3Y] = `3[(2, 3),(4, 0)]`

⇒ 6X + 9Y = `[(6, 9),(12, 0)]`  ....(3)

2[3X + 2Y] = `2[(-2, 2),(1, -5)]`

⇒ 6X + 4Y = `[(-4, 4),(2, -10)]`  .....(4)

समीकरण को घटाने पर (4) समीकरण से (3) हमें मिलता है

5Y = `[(6 + 4, 9 - 4),(12 - 2, 0 + 10)]`

5Y = `[(10, 5),(10, 10)]`

⇒ Y = `[(2, 1),(2, 2)]` 

अब, समीकरण में y का मान डालते हुए (1) हमें मिलता है,

`2"X" + 3 [(2, 1),(2, 2)] = [(2, 3),(4, 0)]`

⇒ `2"X" + [(6, 3),(6, 60)] = [(2, 3),(4, 0)]`

⇒ 2X = `[(2, 3),(4, 0)] - [(6, 3),(6, 6)]`

⇒ 2X = `[(2 - 6, 3 - 3),(4 - 6, 0 - 6)]`

⇒ 2X = `[(-4,0),(-2, -6)]`

⇒  = `1/2 [(-4, 0),(-2, -6)]`

⇒ X = `[(-2, 0),(-1, -3)]`

इसलिए, X = `[(-2, 0),(-1, -3)]` और Y = `[(2, 1),(2, 2)]`

shaalaa.com
आव्यूह
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: आव्यूह - प्रश्नावली [पृष्ठ ५४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [Hindi] Class 12
पाठ 3 आव्यूह
प्रश्नावली | Q 19 | पृष्ठ ५४

संबंधित प्रश्‍न

सिद्ध कीजिए यदि एक आव्यूह सममित तथा विषम सममित दोनों ही हो तो वह एक शून्य आव्यूह है।


यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।


आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।


यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।


यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।


एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।


यदि A = `[(3, 5)]`, B = `[(7, 3)]`, हों तो एक शून्येतर आव्यूह C ज्ञात कीजिए जो इस प्रकार हो कि AC = BC.


यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (kA)' = (kA')


माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।


यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AB)T = BTAT


यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`


A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I


गणितीय आगम के प्रयोग से सिद्ध कीजिए कि किसी भी वर्ग आव्यूह के लिए (A′)n = (An)′, जहाँ n ∈ N


यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से  A3 ज्ञात कीजिए।


यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।


यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।

`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`


आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक


यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।


यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)


किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?


यदि A सममित आव्यूह है तो B′AB ______ है।


यदि A और B दो समान कोटि के आव्यूह हैं तब A + B = B + A होता है।


यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।


एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।


यदि समान कोटि के तीनों आव्यूह सममित हैं तब उनका योग भी सममित आव्यूह है।


किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।


यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×