Advertisements
Advertisements
प्रश्न
यदि A और B दो समान कोटि के आव्यूह हैं तो A - B = B - A होता है।
पर्याय
सत्य
असत्य
उत्तर
यह कथन असत्य है।
व्याख्या:
चूँकि एक ही कोटि के किन्हीं दो आव्यूहों का घटाव क्रमविनिमेय नहीं है।
अर्थात्, A – B ≠ B – A
APPEARS IN
संबंधित प्रश्न
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = |–2i + 3j| इस प्रकार से प्राप्त होते हैं।
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।
एक उदाहरण की सहायता से दिखाइए कि जब आव्यूह A ≠ O, B ≠ O हो तब भी AB = O आव्यूह हो।
यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?
आव्यूह A, B और C के ऐसे उदाहरण दीजिए जो इस प्रकार हों कि AB = BC, जहाँ A एक शून्येतर आव्यूह है, परंतु B ≠ C है।
यदि a = `[(1, 2), ( -2, 1)]`, b = `[(2, 3), (3, -4)]` और c = `[(1, 0), ( -1, 0)] `, हों तो सत्यापित कीजिए: A(B + C) = AB + AC.
यदि A = `[(1, 0, -1),(2, 1, 3 ),(0, 1, 1)]` है तो सत्यापित कीजिए कि A2 + A = A(A + I), जहाँ I एक 3 × 3 तत्समक आव्यूह है।
सिद्ध कीजिए कि किसी भी आव्यूह A के लिए A′A तथा AA′ दोनों ही सममित आव्यूह हैं।
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि a(C – A) = aC – aA
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B) C = AC – BC
यदि A = `[(1, 5),(7, 12)]` और B `[(9, 1),(7, 8)]` हों तो एक ऐसा आव्यूह C ज्ञात कीजिए कि 3A + 5B + 2C एक शून्य आव्यूह हो।
कोटि 3 × 3 के सभी संभव आव्यूहों की संख्या जिनकी प्रत्येक प्रविष्ठि 2 या 0 हो, होगी।
यदि A = `1/pi [(sin^-1(xpi), tan^-1(x/pi)),(sin^-1(x/pi), cot^-1(pix))]`, B = `1/pi [(-cos^-1(x/pi), tan^-1 (x/pi)),(sin^-1(x/pi),-tan^-1(pix))]` हो तो A – B बराबर है।
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।
यदि A इस प्रकार कौ आव्यूह है कि A2 = I, तब (A – I)3 + (A + I)3 –7A बराबर होगा।
प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
एक वर्ग आव्यूह जिसका प्रत्येक अवयव 1 हो तो उसे तत्समक आव्यूह कहते हैं।
यदि A, B और C समान कोटि के वर्ग आव्यूह हैं तब AB = AC से सदैव B = C प्राप्त होता है।
यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।