Advertisements
Advertisements
प्रश्न
यदि संभव हो तो BA और AB ज्ञात कीजिए जहाँ A = `[(2, 1, 2), (1, 2, 4)]` और B = `[(4, 1), (2, 3), (1, 2)]` है।
उत्तर
BA = `[(4, 1),(2, 3),(1, 2)]_(3 xx 2) [(2, 1, 2),(1, 2, 4)]_(2 xx 3)`
BA = `[(8 + 1, 4 + 2, 8 + 4),(4 + 3, 2 + 6, 4 + 12),(2 + 2, 1 + 4, 2 + 8)]_(3 xx 3)`
= `[(9, 6, 12),(7, 8, 16),(4, 5, 10)]_(3 xx 3)`
अब AB = `[(2, 1, 2),(1, 2, 4)]_(2 xx 3) [(4, 1),(2, 3),(1, 2)]_(3 xx 2)`
= `[(8 + 2 + 2, 2 + 3 + 4),(4 + 4 + 4, 1 + 6 + 8)]_(2 xx 2)`
= `[(12, 9),(12, 15)]_(2 xx 2)`
इसलिए, BA = `[(9, 6, 12),(7, 8, 16),(4, 5, 10)]` और AB = `[(12, 9),(12, 15)]`.
APPEARS IN
संबंधित प्रश्न
यदि A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, हों तो A + B, B + C, C + D और B + D योगफलों में कौन से योगफल परिभाषित हैं।
एक व्युत्क्रमणीय आव्यूह A के लिए, (A′)-1 = (A-1)′
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो 2X – 3Y ज्ञात कीजिए।
यदि A = `[(0, 1),(1, 1)]` और B = `[(0, -1),(1, 0)]` हैं तो दिखाइए कि (A + B) (A - B) A2 - B2.
आव्यूह समीकरण `[(2, 1),(3, 2)] "A" [(-3, 2),(5, -3)] = [(1, 0),(0, 1)]` को संतुष्ट करने वाले आव्यूह A ज्ञात कीजिए।
यदि `[(4),(1),(3)]` A = `[(-4, 8,4),(-1, 2, 1),(-3, 6, 3)]` हो तो A ज्ञात कीजिए।
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = A
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
A = `[(0, 1, -1),(4, -3, 4),(3, -3, 4)]` के लिए सत्यापित कीजिए कि A2 = I
यदि A = `[(3, -5),(-4, 2)]` हो तो A2 – 5A – 14 ज्ञात कीजिए और फिर इसके प्रयोग से A3 ज्ञात कीजिए।
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि A = `[(1, 2),(4, 1)]` हो तो A2 + 2A + 7I ज्ञात कीजिए।
यदि A तथा B समान कोटि के वर्ग आव्यूह हैं और B एक विषम सममित आव्यूह है तो दिखाइए कि A′BA एक विषम सममित आव्यूह है।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, -1, 3),(-5, 3, 1),(-3, 2, 3)]`
यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।
यदि A और B समान कोटि के आव्यूह हों तो (AB′–BA′)
किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
आव्यूहों का गुणनफल, योग का ______ करता है।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
यदि A सममित आव्यूह है तो B′AB ______ है।
एक आव्यूह एक संख्या को निरूपित करता है।
दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।
यदि A = `[(2, 3, -1),(1, 4, 2)]` और B = `[(2, 3),(4, 5),(2, 1)]`, तब AB और BA, दोनों परिभाषित हैं तथा समान हैं।
(AB)–1 = A–1. B–1 जहाँ A और B व्यूत्क्रमणीय आव्यूह हैं जो गुणन के क्रम - विनिमेय नियम को संतुष्ट करते हैं।