Advertisements
Advertisements
प्रश्न
किसी आव्यूह को एक अदिश ______ से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
उत्तर
किसी आव्यूह को एक अदिश 0 से गुणा करने पर शून्य आव्यूह प्राप्त होता है।
व्याख्या:
अदिश 0' द्वारा किसी भी आव्यूह का गुणनफल शून्य आव्यूह '0' होता है।
यानी, 0 . A = 0
APPEARS IN
संबंधित प्रश्न
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
यदि A और B समान कोटि के आव्यूह हैं तब (3A -2B)′ = ______
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
यदि संभव हो, तो A और B आव्यूहों का योग ज्ञात कीजिए, जहाँ A = `[(sqrt(3), 1),(2, 3)]`, और B = `[(x, y, z),(a, "b", 6)]` है।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो 2X – 3Y ज्ञात कीजिए।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि A (BC) = (AB) C
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो α का मान ज्ञात कीजिए।
यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I
यदि किन्ही दो वर्ग आव्यूहों के लिए AB = BA हो तो गणितीय आगम से सिद्ध कीजिए कि (AB)n = AnBn
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
यदि आव्यूह A = [aij]2×2 इस प्रकार है कि aij `[:( 1 "यदि i" ≠ "j" ),( 0 "यदि i" ≠ "j" ):]` तब A2 बराबर है।
यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।
प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।
______ आव्यूह दोनों ही सममित तथा विषम सममित आव्यूह हैं।
किसी आव्यूह का ऋण आव्यूह इसको ______ से गुणा करके प्राप्त किया जाता है।
यदि A विषम सममित आव्यूह है तो kA (k कोई अदिश है) एक ______ है।
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।
यदि A, B और C समान कोटि के वर्ग आव्यूह हैं तब AB = AC से सदैव B = C प्राप्त होता है।
यदि A विषम सममित आव्यूह है तो A2 सममित आव्यूह होगा।