Advertisements
Advertisements
प्रश्न
यदि A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]` तथा A–1 = A′, हो तो α का मान ज्ञात कीजिए।
उत्तर
यहाँ,, A = `[(cosalpha, sinalpha),(-sinalpha, cosalpha)]`
दिया गया है: A–1 = A′
दोनों पक्षों को A से पूर्व-गुणा करना
AA–1 = AA′
⇒ I = AA′ ......[∵ AA–1 = I]
⇒ `[(1, 0),(0, 1)] = [(cosalpha, sinalpha),(-sinalpha, cosalpha)] [(cosalpha, - sinalpha),(sinalpha, cosalpha)]`
⇒ `[(1, 0),(0, 1)] = [(cos^2alpha + sin^2alpha, -sinalpha cosalpha + sinalpha cosalpha),(-sinalpha cosalpha + cosalpha sinalpha, sin^2alpha + cos^2alpha)]`
⇒ `[(1, 0),(0, 1)] = [(1, 0),(0, 1)]`
अत: यह a के सभी मानों के लिए सत्य है।
APPEARS IN
संबंधित प्रश्न
आव्यूह A = `[(0, 0, 5),(0, 5, 0),(5, 0, 0)]` है।
आव्यूहों का योग तभी परिभाषित है जब प्रत्येक की कोटि ______ है।
एक व्युत्क्रमणीय आव्यूह A के लिए, (A′)-1 = (A-1)′
समान कोटि के किन्हीं तीन आव्यूहों के लिए AB = AC ⇒ B = C
आव्यूह समीकरण `x[(2x, 2),(3, x)] + 2[(8, 5x),(4, 4x)] = 2[(x^2 + 8, 24),(10, 6x)]` को संतुष्ट करने वाले x के शून्येतर मान निकालिए।
यदि A = `[(2, 4, 0), (3, 9, 6)]` और B = `[(1, 4), (2, 8), (1, 3)]` हों तो क्या (AB)′ = B′A′ है?
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = A
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B) C = AC – BC
यदि A एक वर्ग आव्यूह है जो A2 = A को संतुष्ट करता है तो दिखाइए कि (I + A)2 = 7A + I
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 3, -3),(-1, 2, 2),(1, 1, -1)]`
आव्यूह `[(2, 3, 1),(1, -1, 2),(4, 1, 2)]` को एक सममित तथा एक विषम सममित आव्यूह के योग के रूप में लिखिए।
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
किन्हीं दो A और B आव्यूहों के लिए कौन सा सदैव सत्य है?
प्रारंभिक स्तंभ संक्रिया C2 → C2 – 2C1, का प्रयोग आव्यूह समीकरण
`[(1, -3),(2, 4)] = [(1, -1),(0, 1)] [(3, 1),(2, 4)]`, में करने पर हमें प्राप्त होता है।
प्रारंभिक पंक्ति संक्रिया R1 → R1 – 3R2 का प्रयोग आव्यूह समीकरण `[(4, 2),(3, 3)] = [(1, 2),(0, 3)] [(2, 0),(1, 1)]`, में करने पर हमें प्राप्त होता है।
यदि A एक सममित आव्यूह है तो A3 एक ______ आव्यूह होगा।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो (kA)′ = ______ (k कोई अदिश है।)
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
यदि A सममित आव्यूह है तो B′AB ______ है।
यदि A और B समान कोटि के सममित आव्यूह हें तो AB सममित आव्यूह होगा यदि और केवल यदि ______
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
एक आव्यूह एक संख्या को निरूपित करता है।
असमान कोटि वाले आव्यूहों को घटाया नहीं जा सकता है।
यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′
किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।