Advertisements
Advertisements
प्रश्न
एक a2×2 आव्यूह की रचना कीजिए जिसके अवयव aij = `("i" - 2"j")^2/2` इस प्रकार से प्राप्त होते हैं।
उत्तर
मान लीजिए A = `[("a"_11, "a"_12),("a"_21, "a"_22)]_(2 xx 2)`
दिया है कि aij = `("i" - 2"j")^2/2`
a11 = `(1 - 2 xx 1)^2/2 = 1/2`
a12 = `(1 - 2 xx 2)^2/2 = 9/2`
a21 = `(2 - 2 xx 1)^2/2` = 0
a22 = `(2 - 2 xx 2)^2/2` = 2
अत: आव्यूह A = `[(1/2, 9/2),(0, 2)]`
APPEARS IN
संबंधित प्रश्न
आव्यूह A = [aij]2×2 की रचना कीजिए जिसके अवयव aij इस प्रकार हैं कि aij = e2ix sin jx.
यदि A = `[(2, 3),(1, 2)]`, B = `[(1, 3, 2),(4, 3, 1)]`, C = `[(1),(2)]`, D = `[(4, 6, 8),(5, 7, 9)]`, हों तो A + B, B + C, C + D और B + D योगफलों में कौन से योगफल परिभाषित हैं।
यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।
यदि एक आव्यूह में 28 अवयव हैं, तो इसकी संभव कोटियाँ क्या हैं? यदि इसमें 13 अवयव हों तो कोटियाँ क्या होंगी?
एक 3 × 2 आव्यूह की रचना कीजिए जिसके अवयव aij = ei.x sinjx द्वारा दिए गए हैं।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो 2X – 3Y ज्ञात कीजिए।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो ज्ञात कीजिए कि एक आव्यूह Z जो इस प्रकार हो कि X + Y + Z एक शून्य आव्यूह हो।
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि x और y, 2 × 2 कोटि के आव्यूह हों, तो निम्नलिखित समीकरणों को X और Y के लिए हल कीजिए।
2X + 3Y = `[(2, 3),(4, 0)]`, 3Y + 2Y = `[(-2, 2),(1, -5)]`
यदि A = `[(2, 1)]`, B = `[(5, 3, 4),(8, 7, 6)]` और C = `[(-1, 2, 1),(1, 0, 2)]` हो तो सत्यापित कीजिए कि A(B + C) = (AB + AC)
प्रारंभिक पंक्ति संक्रियाओं से निम्नलिखित आव्यूह का व्युत्क्रम (यदि संभव हो तो) ज्ञात कीजिए:
`[(1, 3),(-5, 7)]`
यदि `[(xy, 4),(z + 6, x + y)] = [(8, w),(0, 6)]`, हो तो x, y, z और w के मान ज्ञात कीजिए।
आव्यूह A ज्ञात कीजिए जो इस प्रकार हो कि `[(2, -1),(1, 0),(-3, 4)] "A" = [(-1, -8, -10),(1, -2, -5),(9, 22, 15)]`
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
यदि A और B क्रमश: 3 × m और 3 × n, कोटि के दो आव्यूह हों तथा m = n, हो तो आव्यूह (5A - 2B) की कोटि होगी।
आव्यूह `[ (1, 0, 0 ), ( 0, 2, 0), (0, 0, 4 )]` एक
यदि A एक m × n कोटि का आव्यूह है और B इस प्रकार का आव्यूह है कि AB′ और B′A दोनों ही परिभाषित हों तो आव्यूह B की कोटि होगी।
एक आव्यूह जो आवश्यक नहीं कि वर्ग आव्यूह हो एक ______ आव्यूह कहलाता है।
यदि A और B समान कोटि के वर्ग आव्यूह हैं तो [k (A – B)]′ = ______
यदि A और B सममित आव्यूह हैं तो AB – BA ______ है।
यदि A और B सममित आव्यूह हैं तो BA – 2AB ______ है।
किसी भी कोटि के आव्यूहों को जोड़ा जा सकता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।
यदि A और B समान कोटि के कोई दो आव्यूह हैं तब (AB)′ = A′B′
यदि A, B और C समान कोटि के वर्ग आव्यूह हैं तब AB = AC से सदैव B = C प्राप्त होता है।