Advertisements
Advertisements
प्रश्न
यदि `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]` हो तो a, b, c और d के मान ज्ञात कीजिए।
उत्तर
दिया गया है: `3[("a", "b"),("c", "d")] = [("a", 6),(-1, 2"d")] + [(4, "a" + "b"),("c" + "d", 3)]`
`[(3"a", 3"b"),(3"c", 3"d")] = [("a" + 4, 6 + "a" + "b"),(-1 + "c" + "d", 2"d" + 3)]`
संबंधित तत्वों की बराबरी करने पर, हम प्राप्त करते हैं,
3a = a + 4
⇒ 3a – a = 4
⇒ 2a = 4
⇒ a = 2
3b = 6 + a + b
⇒ 3b – b – a = 6
⇒ 2b – a = 6
⇒ 2b – 2 = 6
⇒ 2b = 8
⇒ b = 4
3c = – 1 + c + d
⇒ 3c – c – d = – 1
⇒ 2c – d = – 1
और 3d = 2d + 3
⇒ 3d – 2d = 3
⇒ d = 3
अब 2c – d = – 1
⇒ 2c – 3 = – 1
⇒ 2c = 3 – 1
⇒ 2c = 2
∴ c = 1
∴ a = 2, b = 4, c = 1 और d = 3.
APPEARS IN
संबंधित प्रश्न
यदि A एक 3 × 3 कोटि का व्युत्क्रमणीय आव्यूह है तो दिखाइए कि किसी भी अदिश k (शून्येतर) के लिए kA व्युत्क्रमणीय है तथा `("kA")^-1 = 1/"k" "A"^-1`
यदि A = `[(1, 3, 2), (2, 0, -1), (1, 2, 3)]`, तो दिखाइए कि A समीकरण A3 - 4A2 - 3A + 11I = O को संतुष्ट करता है।
यदि A और B समान कोटि के दो आव्यूह हैं, तो (A + B) (A – B) बराबर है।
यदि A = `[(2, -1, 3),(-4, 5, 1)]` और B = `[(2, 3),(4, -2),(1, 5)]` तब
यदि दो आव्यूह A और B समान कोटि के हैं तब 2A + B = B + 2A.
यदि आव्यूह A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, तो A की कोटि लिखिए।
यदि X = `[(3, 1, -1),(5, -2, -3)]` और Y = `[(2, 1, -1),(7, 2, 4)]` हों तो 2X – 3Y ज्ञात कीजिए।
यदि A = `[(3, -4),(1, 1),(2, 0)]` और B = `[(2, 1, 2),(1, 2, 4)]`, हो तो सत्यापित कीजिए कि (BA)2 ≠ B2A2
x तथा y के लिए हल कीजिए।
`x[(2),(1)] + y[(3),(5)] + [(-8),(-11)]` = O
यदि A = `[(0, -1, 2),(4, 3, -4)]` और B = `[(4, 0),(1, 3),(2, 6)]`, हों तो सत्यापित कीजिए कि (A′)′ = (AB)' = B'A'
माना A और B, 3 × 3 के वर्ग आव्यूह हैं। क्या (AB)2 = A2B2 सत्य है? कारण बताइए।
दिखाइए कि यदि A और B वर्ग आव्यूह हैं तथा AB = BA है, तब (A + B)2 = A2 + 2AB + B2
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (AT)T = A
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (bA)T = bAT
यदि A = `[(1, 2),(-1, 3)]`, B = `[(4, 0),(1, 5)]`, C = `[(2, 0),(1, -2)]` तथा a = 4, b = –2 हों तो दिखाइए कि (A – B) C = AC – BC
यदि A = `[(costheta, sintheta),(-sintheta, costheta)]` तो दिखाइए कि A2 = `[(cos2theta, sin2theta),(-sin2theta, cos2theta)]`
यदि A = `[(0, 2y, z),(x, y, -z),(x, -y, z)]` इस प्रकार हो कि A′ = A–1 तो x, y तथा z के मान ज्ञात कीजिए।
यदि संभव हो तो प्रांरभिक पंक्ति संक्रियाओं के प्रयोग से निम्मलिखित आव्यूह का व्युत्क्रम ज्ञात कीजिए।
`[(2, 0, -1),(5, 1, 0),(0, 1, 3)]`
यदि A = `[(0, 1), (1, 0)]`, तो A2 बराबर है।
आव्यूह `[(0, -5, 8),(5, 0, 12),(-8, -12, 0)]`
एक आव्यूह जो आवश्यक नहीं कि वर्ग आव्यूह हो एक ______ आव्यूह कहलाता है।
यदि A और B समान कोटि के सममित आव्यूह हें तो AB सममित आव्यूह होगा यदि और केवल यदि ______
एक या अधिक प्रारंभिक पंक्ति संक्रियाओं के प्रयोग से A–1 ज्ञात करते समय यदि एक या एक से अधिक पंक्तियों के सभी अवयव शून्य हो जाएँ तो A–1 ______ होता है।
दो आव्यूह समान होते हैं यदि उनकी पंक्तियों तथा स्तंभों की संख्या समान हो।
आव्यूहों का योग, साहचर्य तथा क्रम विनिमेय दोनों ही नियमों का पालन करता है।
आव्यूहों का गुणन क्रम विनिमेय होता है।
एक स्तंभ आव्यूह का परिवर्त स्तंभ आव्यूह होता है।
यदि A और B समान कोटि के दो वर्ग आव्यूह हैं तब AB = BA है।
किसी भी आव्यूह A के लिए AA′ सदैव सममित आव्यूह होता है।